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1. (25%) Velocity field, V = (Ax,-2Ax),A = 2: ~ .. 

(a) Equation of the streamlines in the xy plane. (5%) 

(b) Streamline plot through point (4, 8). (5%) 
(c) Velocity of particle at point (4, 8). (5%) 

(d) Position at t = 2 of particle located at (4, 8) at t = 0. (5%) 
(e) Velocity of particle at position found in (d). (5%) 
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2. (25%) Consider flow over a small object in a viscous fluid, such as a small particle settling 
in a glass of water. Analysis of the Navier-Stokes equations shows that the inertial terms 
are much smaller than the viscous and pressure terms in this case. It turns out, then, that 
fluid density drops out of the Navier-Stokes equations. Such flows are called creeping flows. 
The only important parameters in creeping flow are the particle velocity U (relative to the 

fluid), the fluid viscosity~' and the particle length scale d. For three-dimensional bodies, like 
spheres, creeping-flow analysis yields very good results. It is uncertain, however, if creeping 

flow applies to two-dimensional bodies, such as cylinders, since even though the diameter 

may be very small, the length of the cylinder is infinite. 

(a) Apply the Pi theorem to generate an expression for the two-dimensional drag force D2-o 

as a function of the other parameters in the problem. Be careful: two-dimensional drag 
has dimensions of force per unit length, not simply force. (10%) 

(b) Is your result in part (a) physically plausible? If not, explain why not. (5%) 

(c) It turns out that fluid density p cannot be neglected in analysis of creeping flow over 

two-dimensional bodies. Repeat the dimensional analysis, this time including p included 
as a parameter. Find the resulting nondimensional relation between the parameters 

in this problem. (10%) 
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3. (25%) As shown in the figure below, fluid with 'density p and viscosity J.l is between two 
infinite parallel plates with pressure gradient dp/dx. Assume the spacing between two 
plates ish, the bottom wall is fixed and top wall is moving with constant speed U. 
(a) Write down the simplified governing equation for this flow field with boundary 

conditions. (5%) 
(b) Find the velocity distribution u(y)? (5%) 

(c) Calculate the shear stress ton the bottom wall. (5%) 
(d) Calculate the volume flow rate Q per unit depth. (5%) 
(e) Find y coordinate of the point that has maximum velocity? (5%) 

Pressure gradient dp/dx 
p,p 

) u 
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4. (25%) Consider a flow in a two-dimensional duct of a length L, whose walls are converging 

linearly in the streamwise direction, denoted as the x direction in the figure below. Assume 
the flow be inviscid and incompressible. The duct width at x=O and L are ho and ho/2, 

respectively; the streamwise velocity u at x=O and L are Uo and 2Uo, respectively. Let the 
streamwise velocity u be a function of x only, u=u(x). Find the expressions of the velocity in 

they direction, called v, and the streamwise pressure gradient, called :~, in terms of Uo, L 

and p, where p denotes the density of the flow . 
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