系 所：航空太空工程學系
考試科目：材料力學
考試日期：0205，節次：1
第1頁，共｜頁
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．（ 30% ）A propped cantilever beam of length L is loaded by a triangularly distributed load of maximum intensity q_{0} at B as shown in Fig．1．The beam has a rectangular cross section with width b and height h ．
（a）Use the fourth－order differential equation of the deflection curve to solve for reactions at A and B and also the equation of the deflection curve．
（b）Determine the strain energy U stored in the beam．
（c）Calculate the bending stress σ_{x} at the top surface of the fixed end A ．
（d）Calculate the maximum shear stress $\tau_{x y}$ at the mid－point（ $x=L / 2$ ）of the beam．

Fig． 1

Fig． 2

2．（20\％）A rectangular steel plate with thickness $t=6.0 \mathrm{~mm}$ is subjected to uniform normal stresses σ_{x} and σ_{y} ，as shown in Fig．2．Strain gages A and B ，oriented in the x and y directions，respectively，are attached to the plate．The gage readings give normal strains $\varepsilon_{x}=0.00062$（elongation）and $\varepsilon_{y}=-0.00045$（shortening）．The Young＇s modulus and Poisson＇s ratio of the steel are，respectively，$E=200 \mathrm{GPa}$ and $\nu=0.3$ ．
（a）Determine the stresses σ_{x} and σ_{y} and the change Δt in the thickness of the plate：
（b）Determine the principal stresses and show them on a sketch of a properly oriented element．
（c）Determine the maximum shear stresses and associated normal stresses and show them on a sketch of a properly oriented element．

3．（25\％）A prismatic bar $B C$ ，with cross－sectional area A ，is loaded by a uniformly distributed axial load p from the mid－span at D to end C as shown in Fig．3．Young＇s modulus of the material is E ．Determine the displacements（a）of point D and（b）of point C ．

Fig． 3

Fig． 4

4．(25%) Two bars of the same material are arranged so that the gap between their free ends is $\delta=0.20 \mathrm{~mm}$ at room temperature（see Fig．4）．The length of bars is $L=100 \mathrm{~mm}$ ；cross－sectional areas are $A_{1}=125 \mathrm{~mm}^{2}$ and $A_{2}=250 \mathrm{~mm}^{2}$ ．Young＇s modulus of the material is $E=200 \times 10^{6} \mathrm{~Pa}$ ，and the coefficient of thermal expansion is $\alpha=10 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ ．Calculate the stresses in the two bars when the temperature increase is $300^{\circ} \mathrm{C}$ ．

