國立成功大學 110學年度碩士班招生考試試題

編 號: 132

系 所: 航空太空工程學系

科 目:自動控制

日 期: 0202

節 次:第1節

備 註:不可使用計算機

編號: 132

國立成功大學 110 學年度碩士班招生考試試題

系 所:航空太空工程學系

考試科目:自動控制

考試日期:0202,節次:1

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予 計分。

1. Consider a system represented by the following differential equations:

$$Ri_1(t) + L_1 \frac{di_1(t)}{dt} + v(t) = v_a(t), \quad L_2 \frac{di_2(t)}{dt} + v(t) = v_b(t), \quad \text{and} \quad i_1(t) + i_2(t) = C \frac{dv(t)}{dt},$$

where R, L_L , L_Z , and C are given constants, and v_a and v_b are inputs. Draw a block diagram to represent the system where the output is v. Also, obtain the transfer functions for $\frac{V(s)}{V_a(s)}$ and $\frac{V(s)}{V_b(s)}$. (25%)

2. For a system transfer function given as:

$$\frac{Y(s)}{R(s)} = \frac{s+8}{s^2+4s+8}$$
 and $R(s) = \frac{1}{s}$,

derive the output function y(t), the rise time t_r , and the peak time t_P , where the rise time is defined as the first time when y(t)=r(t) evaluated from t=0. (25%)

編號: 132

國立成功大學 110 學年度碩士班招生考試試題

系 所:航空太空工程學系

考試科目:自動控制

考試日期:0202,節次:1

第2頁,共2頁

- 3.
 - (a). Sketch the Nyquist and Bode plot of the following system shown in Fig.3 with K = 1, please also provide the Nyquist \mathcal{D} contour plot. (20%)
 - (b). Determine the range of K, such that the closed-loop is stable by Nyquist plot. (5%)
 - (c). Determine the gain K, such that the gain margin of the system is 6dB. (5%)

$$KG(s) = \frac{K(s-5)}{s(s+10)}$$

$$R(s) \xrightarrow{+} KG(s)$$

$$Fig.3$$

4.

Consider the system shown in Fig. 4. Design a controller $G_c(s)$ such that the closed-loop system satisfies the following system specifications. (10%)

- (a). zero steady state error to a step input R(s), and
- (b). the complex closed-loop poles having damping ratio = 0.5 and natural frequency = 1.5 rad/s

Sketch the root locus of the compensated system $kG_c(s)G(s)$. (10%)

Fig.4