國立成功大學 111學年度碩士班招生考試試題

編 號: 137、164

所: 航空太空工程學系 能源工程國際碩士學位學程

科 目: 熱力學

日 期: 0219

節 次:第1節

備 註:不可使用計算機

編號: 137、164

國立成功大學 111 學年度碩士班招生考試試題

系 所:航空太空工程學系、能源工程國際碩士學位學程

考試科目:熱力學

考試日期:0219,節次:1

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Each line in the table below gives information about a process of a closed system from state #1 to state #2. Each entry has the same energy units. Determine the values of all Greece alphabets in the table. (10%)

Process	Q	W	E_1	E_2	¹⊿E
A	+50	-20	+20	α	β
В	γ	+20	δ	+50	+30
C	-25	-80	ε	+160	ζ
D	η	-90	+50	θ	0
E	к	+150	+20	λ	-100

2. Two tanks are connected by a valve. One tank contains m_1 of ideal gas at T_1 and P_1 . The other tank holds m_2 of ideal gas at T_2 and P_2 . The valve is opened and the gases are allowed to mix while receiving energy by heat transfer from the surrounding. The specific heat is c_{ν} , and the final equilibrium temperature is T_f . Derive formulas for the final equilibrium pressure, p_f , and the heat transfer for the process. (20%)

- 3. Liquid flows at a constant mass flow rate of $\dot{m}_i = 6\,kg/s$ into a vertical cylindrical tank. Liquid exits the tank with a mass flow rate proportional to the height of the liquid in the tank: $\dot{m}_e = 1.2L\,kg/s$, where L is the instantaneous liquid height, in m. The area of the circular base is $A = 0.2m^2$. The liquid density is constant at $1000\,kg/m^3$. The tank is empty initially.
 - a. Determine the variation of the liquid height with time. (15%)
 - b. Determine L as $t \to \infty$. (5%)

編號: 137、144

國立成功大學 111 學年度碩士班招生考試試題

系 所:航空太空工程學系、能派工程、國際項土型位場程

考試科目:熱力學

考試日期:0219,節次:1

第2頁,共2頁

4. A vertical cylindrical water tank (diameter is D_{tank}) whose top is open to the atmosphere is initially filled with water. Now the discharge plug near the bottom of the tank is pulled out, and a water jet whose diameter is D_{jet} streams out. The average velocity of the jet is approximated as $V = \sqrt{2gh}$, where h is the height of the water in the tank. From the center of the hole and g is the gravitational acceleration. Derive the formula of the time (t) required from t = 0 ($h = h_0$) to t = t with h_t . If $D_{tank} = 0.9$ m, $D_{jet} = 0.009$ m, $h_0 = 0.36$ m, and $h_t = 0.04$ m, what is t (second)? (15%)

- 5. Derive the Bernoulli equation from the first law of thermodynamics and show all assumptions. (15%)
- 6. From h = u + Pv, under what conditions, you can get $\left(\frac{T_2}{T_1}\right) = \left(\frac{v_1}{v_2}\right)^{k-1}$? Derive it. What is k? Under the same conditions, also the derive the relations between T and v, as well as P and v. (20%)