P1/2

Electric Circuit and Electronics

Institute of Aeronautics ans Astronautics

- 1. In Figure 1, (a) Find an equivalent circuit by Bartlett Bisection Theorem, (巴来特种分定程)
 - (b) Find branch current I,
 - (c) Find node voltage V_{ab}. (15%)

- 2. In Figure 2, if $i_1(0^+)=2$, $i_2(0^+)=-1$, $V_c(0^+)=3$,
 - (a) Formulate the state equations to solve this curcuit,
 - (b) Calculate $v_2(0^+)$, $\frac{dv}{dt}2(0^+)$.

(15%)

- 3. (a) Describe the V-I characteristic of a tunnel diode. (5%)
 - (b) Describe the R-S Flip-Flop circuit and its truth table. (5%)
 - (c) Define the input offset voltage for an operational amplifier. (5%)

- 4. An amplifier is shown in Figure 3, with its specifications in Table 1.
 - (a) Draw the alternative equivalent circuit by using Miller's Theorem,
 - (b) Calculate R_i , R_i , A_v , A_v , and A_I =- I_2 / I_1 . (15%)

	Table		
(h-Parameters of 2N2222 at I _E =1.3 mA)			
	CE	CC	СВ
h	1,100	1,100	21.6 ohm
h_r	2.5x10 ⁻⁴	~ 1	2.9×10 ⁻⁴
h _f	50	-51	-0.98
h _o	24	25	0.49 ALA/V
1/h _o	40K	40K	2.04M

- 5. Prove how does transistor transconductance g_m vary with $|I_c|$ and T at high frequency operation. (15%)
- 6. In stability problem, define (a) rise time,
 - (b) delay time,
 - (c) overshoot,
 - (d) settling time.

Draw a step response of a two-pole feedback amplifier for a damping factor K=0.3, and show the above items in the response curve. (15%

- ** The drawing is not necessary to be precision in scale. (此图毋高 t分野 难,任可求负的。)
- 7. (a) Explain what is the "thermal runaway". (5%)
 - (b) Define and explain the Common Mode Rejection Ratio. (5%)