P1/2 Electric Circuit and Electronics Institute of Aeronautics ans Astronautics - 1. In Figure 1, (a) Find an equivalent circuit by Bartlett Bisection Theorem, (巴来特种分定程) - (b) Find branch current I, - (c) Find node voltage V_{ab}. (15%) - 2. In Figure 2, if $i_1(0^+)=2$, $i_2(0^+)=-1$, $V_c(0^+)=3$, - (a) Formulate the state equations to solve this curcuit, - (b) Calculate $v_2(0^+)$, $\frac{dv}{dt}2(0^+)$. (15%) - 3. (a) Describe the V-I characteristic of a tunnel diode. (5%) - (b) Describe the R-S Flip-Flop circuit and its truth table. (5%) - (c) Define the input offset voltage for an operational amplifier. (5%) - 4. An amplifier is shown in Figure 3, with its specifications in Table 1. - (a) Draw the alternative equivalent circuit by using Miller's Theorem, - (b) Calculate R_i , R_i , A_v , A_v , and A_I =- I_2 / I_1 . (15%) | | Table | | | |--|----------------------|-------|----------------------| | (h-Parameters of 2N2222 at I _E =1.3 mA) | | | | | | CE | CC | СВ | | h | 1,100 | 1,100 | 21.6 ohm | | h_r | 2.5x10 ⁻⁴ | ~ 1 | 2.9×10 ⁻⁴ | | h _f | 50 | -51 | -0.98 | | h _o | 24 | 25 | 0.49 ALA/V | | 1/h _o | 40K | 40K | 2.04M | | | | | | - 5. Prove how does transistor transconductance g_m vary with $|I_c|$ and T at high frequency operation. (15%) - 6. In stability problem, define (a) rise time, - (b) delay time, - (c) overshoot, - (d) settling time. Draw a step response of a two-pole feedback amplifier for a damping factor K=0.3, and show the above items in the response curve. (15% - ** The drawing is not necessary to be precision in scale. (此图毋高 t分野 难,任可求负的。) - 7. (a) Explain what is the "thermal runaway". (5%) - (b) Define and explain the Common Mode Rejection Ratio. (5%)