
國立成功大學七十八學年度碩士班入學考試(電)電路的工程修試題)共

(A)電子電路

1. In Figure 1, the switch S is closed at t=0. Solve the inductor current $i_L(t)$ for a time interval of $[0, \infty)$.

2. Find the Thevenin's Equivalent circuit for $\mbox{Figure 2 on R}_L.$ Note: Using superposition theorem is recommended.

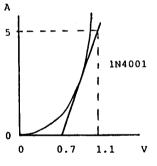


Figure 3.

diode. An adopter is to be designed using (a) a step-down transformer, (b) a bridge diode composing of 1N4001's, (c) a filter capacitor.

The specifications for this adopter is 2A maximum DC, average output voltage 6.0 VDC. for the AC

3. Figure 3 shows the V-I characteristic of 1N4001

(a) Draw the circuit, specified each component with certain values, such as the capacitor in uF, the transformer secondary AC voltage.

input is 110 V 60 Hz.

(b) Calculate the DC output voltage if output current drops from 2A to 1 A.

(15%)

(10%)

Note: An adopter is possible a simple DC power supply for domestic use indoor.

試(電子電路與作將試題 國立成功大學七八學年度獨大部分

- A transistor operating at low frequency can be replaced by its h-parameter model. Assume the source voltage $\mathbf{V_s}$, in series with a source resistor $\mathbf{R_s}$ to the transistor, and an output impedance $\mathbf{Z}_{\underline{\mathbf{I}}}$ is applied.
 - (a) Draw the model circuit,
 - (b) Derive the relationship of $A_{\overline{1}}$, using h-parameters,
 - (c) Derive the relationship of $\mathbf{Z}_{\underline{i}}$, using the h-parameters.

(10%)

- Brief answers to the following questions.
 - (a) Thermal runaway,
 - (b) Resonant pheonomenon,
 - (c) Miller effect of high frequency operation,
 - (d) Depletion area of a P-N junction,
 - (e) Negative resistance of Tunnel diode.

(15%)

(B) 工程力學

- 1 (a) What vertical motion must the top of a yo-yo (see Fig. 1.a) string be given to make its center stay fixed in space? What will be the force in string? (10%)
 - (b) The table in Fig. 1.b turns at constant speed. Write the equation of motion for the point mass with $l \neq 0$. (10%)
- 2 A particle P of mass m is constrained to slide without friction down a tube attached to a constantly spinning cone c as shown in Fig. 2. A constant gravitational field (down c_3) is assumed. In terms of the coordinates and the constants given in Fig. 2, derive
 - (a) a single scalar differential equation describing the motion of the particle P. (10%)
 - (b) the constrained force(s) acting on the particle P. (10%)

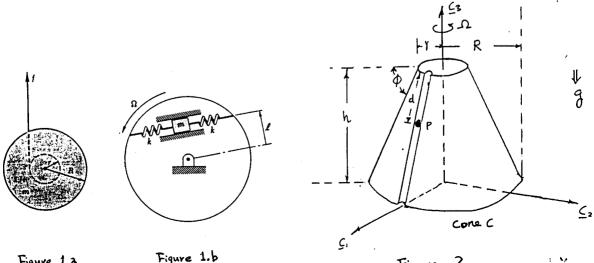


Figure 1.a.

Figure 1.b

Figure