1. (12 points)

Evaluate the following integral

$$\int_C \frac{z^2 + \frac{1}{3}}{z^3 - z} dz, \qquad C: \left| z - \frac{1}{2} \right| = 1 \text{ (Clockwise)}$$

2. (12 points)

The gamma function $\Gamma(x)$ is defined as

$$\Gamma(x) \equiv \int_0^\infty t^{x-1} e^{-t} dt, \quad \text{for} \quad x > 0.$$

a). Deduce and explain

$$\Gamma(x) = (x-1)\Gamma(x-1)$$
 for $x > 1$

and

$$\Gamma(n) = (n-1)! \tag{4 points}$$

- b). From "a)", define $\Gamma(x)$ for x < 0. Compute $\Gamma(1/2)$ and then $\Gamma(-1/2)$. (4 points)
- c). What are the singular points for $\Gamma(x)$, $-\infty < x < \infty$. Explain why. (2 points)
- d). Evaluate

$$I = \int_0^\infty e^{-x^4} dx. \tag{2 points}$$

3. (12 points)

The vibration of a membrane is governed by the following equation

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = \frac{\partial^2 w}{\partial t^2}$$

- a). Find the lowest mode of the square membrane with vertices at (0,0), $(\pi,0)$, (π,π) and $(0,\pi)$. (4 points)
- b). Use "a)", find the lowest frequency of vibration of a triangular membrane with vertices at (0,0), $(\pi,0)$, (π,π) .

Hint: Consider the lowest mode of the square membrane that has y = x as a nodal line (i. e., w = 0 along y = x). (8 points)

4. (12 points)

Consider a constant matrix $A, A \in \mathbb{R}^{n \times n}, Ax = b$ where $x \in \mathbb{R}^{n \times 1}, b \in \mathbb{R}^{n \times 1}$

- a). For any $b, b \neq 0$, if solution x exists, what condition should A have.
- b). For b = 0, if solution x exists, what condition should A have.
- c). Let $A = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$, find the eigenvalues and eigenvectors.

5. (12 points)

f(t) is a periodic function of period T and can be represented by a Fourier series

$$f(t) = a_o + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2n\pi}{T} t + b_n \sin \frac{2n\pi}{T} t \right)$$

- a). Derive the expressions for the Fourier coefficients a_0 , a_n , b_n , $n = 1, 2, \cdots$
- b). Using $e^{\pm i\theta} = \cos \theta \pm i \sin \theta$, where $i = \sqrt{-1}$, show that f(t) may be written as

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{i2n\pi t/T}$$

and give the expression for the complex Fourier coefficients c_n .

c). Using the result from "a)", find the Fourier series of

$$f(t) = |t|, -2 < t < 2,$$
 $f(t+T) = f(t)$ and $T = 4$.

6. (14 points)

- a). Find the Fourier transforms F(k) of the following functions f(x):
 - i). $f(x) = \text{delta function } \delta(x)$

ii).
$$f(x) = \text{decaying pulse} = \begin{cases} e^{-ax}, & \text{if } x \ge 0; \\ 0, & \text{if } x < 0. \end{cases}$$

b). Solve the differential equation

$$\frac{du}{dx} + au = h(x)$$

by taking Fourier transforms to find U(k). What is the solution u if $h(x) = \delta(x)$?

7. (12 points)

Solve the differential equation

$$y''' - \left(\frac{3}{x^2}\right)y' + \left(\frac{3}{x^3}\right)y = \ln x, \qquad ' \equiv \frac{d}{dx}$$

8. (14 points)

a). Find a unit vector perpendicular to the surface

$$x^2 + y^2 + z^2 = 3$$

at the point (1,1,1).

b). Derive the equation of the plane tangent to the surface at (1,1,1).