航太所

(丙)

國立成功大學七十九學年度碩士班入學考試(線性控制 試題)第1頁

(25%) 1. Shown in Figure 1 is the step response of a second-order system whose transfer function is given below. Find the system parameters a, b, and c.

$$\frac{Y(s)}{R(s)} = \frac{c}{s^2 + as + b}, \quad R(s) = \frac{1}{s}$$

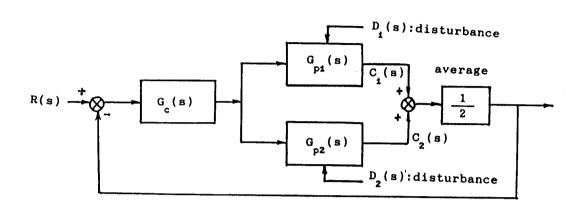
(10%)(1).An unstable linear control object (G (s)) is successfully under feedback control

2.

$$R(s)$$

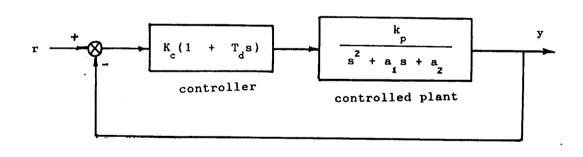
$$G_{c}(s)$$

$$G_{p1}(s):disturbance$$


$$G_{1}(s)$$

where
$$G_c(s) = \frac{B_c(s)}{A_c(s)}$$
 and $G_{pi}(s) = \frac{B(s)}{A(s)}$.

There is another unstable control object $G_{p2}(s)$ which is identical characteristics as $G_{p1}(s)$; i.e. $G_{p2}(s) = G_{p1}(s) = \frac{B(s)}{A(s)}$. Unfurtunately, there is only one controller


航太所 (场) 國立成功大學七十九學年度碩士班入學考試(線性控制 試題) # 3 頁

available. As a temporary solution, one engineer National T university suggested to let $G_{p2}(s)$ and $G_{p1}(s)$ share the controller as follows.

Do you support this scheme? (State with proof)

(15%)(2) It is claimed that the closed loop reference input response can be made close to a first order process response by making K very large (high-gain feedback): i.e. the second order process behaves like a first order process.

(a). show that this is true and obtain the first order response that approximate the response y(t) for

$$r(t) \begin{cases} = r_0 & t = 0 \\ = 0 & t > 0 \end{cases}$$

(b). T_d s is the controller has been replaced by a realisable filter, $\frac{T_ds}{1+T_rs}$. It has been also noted that the transducer used for measuring y(t) has dynamics $\frac{1}{T + 1}$. Comment on the effect of T and T on the high gain feedback scheme.

航太好 (丙) 國立成功大學七十九學年度碩士班入學考試(線 性 搀 制 試題) 其 3 頁

3. Roughly sketch the root locus of the following system. Also, show the corresponding asymptotes for $s \to \infty$ on each plot. A proper choice of axes are given for each case.

(1).
$$\frac{64 \text{ k}}{\text{s(s + 4)(s + 16)}}$$
 (3%) [H(-17,3) V(-15,15)]

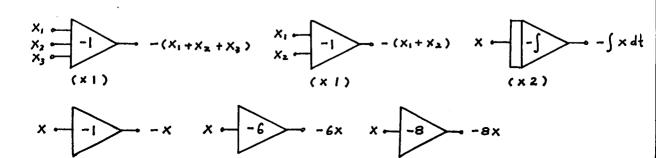
(2).
$$\frac{k}{s(s+3)(s^2+6s+64)}$$
 (3%) [H(-8,2) V(-5,5)]

(3).
$$\frac{k(s+1)}{s(s-1)(s+6)}$$
 (3%) [H(-8,2) V(-5,5)]

(4).
$$\frac{2e^{-3.0s}}{s(s+1)}$$
 (3%) [H(-5,5) V(-5,5)]

- Please answer the following questions.
- (1). What is the time constant of the system with a transfer

function
$$\frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} . (2\%)$$


- (2). What is the peak resonance? What is its relationship to the overshoot? Is this relationship established for a general transfer function? (4%)
- (3). What is the bandwidth? What is the relationship between the bandwidth and the response time? (4%)
- (4). How do you determine phase margin and gain margin from a Nyquist plot? a Bode plot? a Nichols plot? (Show it using the corresponding figures). (6%)
- (5). What property, gain or phase, of a phase-lead compensator do we use in the compensation? For what type of Bode plot is the phase-lead compensation not effective? (5%)
- (6). State any two advantages and any two disadvantages of a control system design using feedback. (4%)

5. Consider a system
$$\frac{y(s)}{r(s)} = \frac{s+1}{s+6s+8}$$

 $(\times 1)$

(x3)

- (1). Show the controller canonical form (realization) of this system. (6%)
 - (2). Draw up a patching diagram for analog simulation of the above realization using the following components. (7%)

(X 1)