頁

(مرح) 1. Briefly describe the following terminologies:

- (1) Kepler's Laws
- (2) Precession and Nutation
- (3) Coulomb friction
- (4) Resonance
- (>0%) 2. The two uniform links, each of mass m, are in the vertical plane and are connected and constrained as shown in the following figure. As the angle θ between the links increases with the application of the horizontal force P, the light rod, which is connected at A and passes through a pivoted collar at B, compresses the spring of stiffness k. If the spring is uncompressed in the position equivalent to that for wich $\theta = 0$, determine the force P which will produce equilibrium at the angle θ .

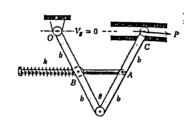


Figure 1

Consider a wheel of radius "a" rolling on the inside of a fixed circular track of a radius r_0 . An arm connecting the fixed point o and the wheel hub o' moves at a constant angular velocity ω . Assuming that there is no slipping between wheel and track, find the acceleration of a point P on the circumference of the wheel. The position of P relative to the arm is given by the angle ϕ .

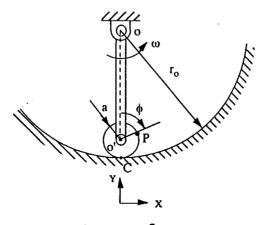


Figure s

國立成功大學八十一學年度 碩士明考試(之組) 共立頁

- (20%)4. A rocket is fired vertically from rest at ground. The initial combined mass of a rocket and propellant is $m_0 = 2.5 \times 10^6$ kg. If the propellant mass is $m_f = 20 \times 10^6$ kg, the burning rate is $\dot{m}_f = 8.0 \times 10^3$ kg/s, and the propellant relative speed at the exit nozzle is 3×10^3 m/s, determine
 - (1) the rocket speed V_b at the instant of propellant burn out,
 - (2) the altitude h_b of (1), hint $\int \ln |x| dx = x \ln |x| x$. Assume constant gravitational field at (1) and (2).
 - (3) For altitude dependent gravitational field, do you get a smaller, equal, or large V_b and h_b ?
- (>0%) 5. A motor weighing 350 \(\ell \) is supported by four springs, each having a constant of 750 \(\ell \ell \)/in. The unbalance of the rotor is equivalent to a weight of 1 oz located 6 in. from the axis of rotation. Knowing that the motor is constrained to move vertically,
 - (a) determine the speed in rpm at which resonance occur,
 - (b) calculate the amplitude of the vibration of the motor at a speed of 1200 rpm.
 - (c) briefly discuss the dynamic characteristic of the system.
 Hint: 1 lb = 16 oz