1. Consider an NACA0012 airfoil with a chord of 1.0 meter and span of 4 meters in an airstream at standard sea level conditions. The freestrem velocity is 80 m/s. The total lift force is 5000 Newtons. By assuming the inviscid flow, answer the following questions. (1), calculate the necessary angle of attack ($\alpha = ?$) based on the two-dimensional thin airfoil theory, such that the lift force per unit span (L) can be approximately evaluated by

$$c_{\ell} = \frac{L}{q_{\infty}S} \sim 2\pi\alpha, \ q_{\infty} = \frac{\rho_{\infty}U_{\infty}^2}{2}, \ S \sim \mathrm{chord} \times 1 \ \mathrm{meter}$$

- (2), if consider the three-dimensional effect, do you think that the necessary α will be increased or not? Please explain the reason. (4%)
- (3), now the NACA0012 airfoil is replaced by a circular cylinder with diameter of 1 meter and the same span of 4 meters. Determine the angular velocity (in rpm) of the circular cylinder in order to provide the same lift force of part (1). (10%)
- 2. A normal shock moves at a constant velocity of 500 m/s into still air (100 kPa, 0° C). Determine the static and stagnation conditions present in the air after passage of the wave, as well as the gas velocity behind the wave.

Table B.1 Normal shock tables ($\gamma = 1.4$)

M ₁	M ₂	P ₂ /P ₁	ρ_2/ρ_1	T_2/T_1	p ₁₂ /p ₁₁	p ₁ /p ₁₂
1. 00	1. 000	1.000	1,000	1,000	1,000	0, 5233
1.01	. 9901	1. 023	1.017	1.007	1,000	. 5221
1.02	. 9805	1.047	1.033	1.013	1.000	. 5160
1.03	. 9712	1. 071	1.050	1,020	1,000	. 5100
1.04	. 9620	1.095	1.067	1.026	. 9999	. 5039
:	;					
1, 40	. 7397	2, 120	1, 690	1, 255	. 9582	. 3280
1.41	. 7355	2. 153	1, 707	1, 261	. 9557	. 3242
1. 42	. 7314	2, 186	1. 724	1, 268	. 9531	. 3205
1. 43	. 7274	2. 219	1.742	1, 274	. 9504	. 3169
1.44	. 7235	2, 253	1. 750	1. 241	. 9476	.3133
1, 45	. 7196	2. 286	1, 776	1, 287	. 9448	. 3098
1.46	, 7157	2, 320	1, 793	1, 294	. 9420	. 3063
1. 47	,7120	2. 354	1.811	1,300	9390	. 3029
1.48	. 7083	2, 389	1.828	1.307	. 9360	. 2996
1.49	. 7047	2, 423	1.845	1, 314	. 9329	. 2962
1.50	. 7011	2, 458	1, 862	1, 320	. 9298	, 2930
1, 51	. 6976	2, 493	1.879	1, 327	. 92H6	. 2898
1, 52	. 6941	2, 529	1. 89fi	1.334	. 9233	. 4866
1, 53	. 6907	2. 564	1, 913	1.340	. 9200	. 2835
1, 54	. 6874	2.600	1, 930	1.347	. 9166	. 2804
1. 55	6841	2, 636	1.947	1.354	. 9132	. 2773
1, 56	. 6809	2, 673	1, 964	1, 361	, 9097	. 2744
1. 67	. 6777	2. 709	1. 981	1, 367	9061	. 2714
1. 58	. 6746	2. 746	1.99%	1.374	. 9026	. 2685
1.59	. 6715	2. 783	2.015	1.381	, 8989	. 2656

(>0%) 3. An incompressible fluid flows in a pipe of radius, R. At the inlet, section 1, the velocity is uniform over the cross-section, with a value V. At section 2, where the flow is laminar and fully developed, the velocity varies with radius according to the relation

$$V = V_{max} \Big(1 - \frac{r^2}{R^2} \Big)$$

頁

- a) Demonstrate that $\frac{V_1}{V_{max}} = \frac{1}{2}$
- b) If $\bar{\tau}_w$ is the average wall shearing stress retarding the flow between sections 1 and 2, find the pressure drop $(p_1 p_2)$ in terms of $V_1, \rho, L, R, \bar{\tau}_w$

- 4. A circular disc of radius a is parallel to and at distance h from a rigid plane, and the space between them is filled with fluid. The disc approaches the plane at a constant velocity U. Assuming that h << a, $\frac{\rho h U}{\mu} << 1$, the flow is steady, axisymmetric and dominantly radial. The pressure at the edge of the disc is atmosphere.
 - (1) Based on the above description and the following simplified Navier-Stokes equations in cylindrical coordinates (see Reference), find out the equations of motion and the boundary conditions which are suitable for the present problem.
 - (2) From the equations of motion, continuity equation and boundary conditions, determine the pressure distribution on the moving disc.

Reference:

Simplified Navier-Stokes equations in cylindrical coordinates

$$\mu\left(\frac{\partial^{2} u_{r}}{\partial r^{2}} + \frac{1}{r} \frac{\partial u_{r}}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} u_{r}}{\partial \theta^{2}} + \frac{\partial^{2} u_{r}}{\partial z^{2}} - \frac{u_{r}}{r^{2}} - \frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}\right) = \frac{\partial p}{\partial r}$$

$$\mu\left(\frac{\partial^{2} u_{\theta}}{\partial r^{2}} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} u_{\theta}}{\partial \theta^{2}} + \frac{\partial^{2} u_{\theta}}{\partial z^{2}} + \frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta} - \frac{u_{\theta}}{r^{2}}\right) = \frac{1}{r} \frac{\partial p}{\partial \theta}$$

$$\mu\left(\frac{\partial^{2} u_{z}}{\partial r^{2}} + \frac{1}{r} \frac{\partial u_{z}}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} u_{z}}{\partial \theta^{2}} + \frac{\partial^{2} u_{z}}{\partial z^{2}}\right) = \frac{\partial p}{\partial z}$$

Continuity equation

$$\frac{\partial u_r}{\partial r} + \frac{\dot{u}_r}{r} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{\partial u_z}{\partial z} = 0$$

國立成功大學八十一學年度 设高班考試(派體力學 試題) #3頁

(>02) 5. Steady, incompressible boundary layers develop on the two-dimensional duct walls.

Given: boundary layer thickness $\theta=6.0\sqrt{\frac{\nu x}{U_0}}$ displacement thickness $\delta^*=2.0\sqrt{\frac{\nu x}{U_0}}$ momentum thickness $\theta=0.7\sqrt{\frac{\nu x}{U_0}}$

where U_0 is the velocity of the uniform flow at the inlet of the duct; p_0 is the static pressure of the flow at the inlet of teh duct, and ν , ρ are the kinematic viscosity and density of the fluid, respectively.

Find: Wall pressure at X = 1m and 4m.

