1. The bar shown in the figure has cross-sectional area A_0 from A to C and $2A_0$ from C to B. The bar is subjected to its own weight and a load P at point C. The weight per unit volume is γ , and the modulus of elasticity is E. The total weight of the bar is $3\gamma A_1 L = P$. Determine (i) the reactions at supports A and B; (ii) the deflection at point C.

2. Calculate the maximum shear stress τ_{max} and the (10%)angle of twist ϕ for a steel tube (G = 76 GPa) having the cross section shown in the figure. The tube has length L = 1.5m and is subjected to a torque T = 15kN·m.

Given:

For a thin-walled tube: shear flow $f=\tau t=\frac{T}{2A_m}, \ \phi=\frac{TL}{GJ}, \ J=4A_m^2\left[\int_0^{L_m}\frac{ds}{t}\right]$ where f is shear flow, L_m is the length of the median line, and A_m is the area enclosed by the median line of the cross section.

(25%) 3. Determine the deflection at point D for the following problems.

(Hint: The beams are in contact only at points C and D.)

(5%) (a) What is "buckling"?

4.

- (5%) (b) Is there any difference in consideration between the buckling design of beams and plates? Why?
- (15%) (c) Find the buckling load P_{cr} of the following step column by energy method.

國立成功大學八十二學年度 积太利 考試(打粉力學

A cantilever beam (Fig. a), having a length of 60 inches and a cross section of channel shape (Fig. b), is subjected to a concentrated vertical load P at its free end. The beam is made of a material whose stress-strain curve is shown in Figure c.

a. At which location the load P applied will result in pure bending about z-axis

- without twisting.
- b. Determine the ultimate load P_u this beam can take.
- c. Determine the stress (both normal and shear) distributions schematically at the sections A-A, B-B, and C-C as indicated in Fig. a under $P_{\rm tt}$.

