國立成功大學 學年度

考試(電路電」口分 試題)共2月

(15%)

(15%)

- 1. Figure 1 shows the circuit with two impedances $\mathbf{Z}_{\mathbf{S}}$ and $\mathbf{Z}_{\mathbf{L}}$.
 - (a) Derive the necessary condition of $Z_{\rm S}$ and $Z_{\rm L}({\rm Load})$ to fulfill the Maximum Power Transfer Theorem, from which load $Z_{\rm L}$ will receive maximum power delivery from power source $V_{\rm C}(t)$.
 - (b) Under direct current (d.c.) condition, what is the necessary condition of maximum power delivery.
 Note: R and R, are the only parts of concern from

Note: R_s and R_L are the only parts of concern from z_s and z_L .

- Find a Thevenin Equivalent Circuit from Figure 2 across terminals a and b with 80 Ohms load.
- Following Figure 3, use any small signal transistor equivalent circuit model to process the problems:
 - (a) Calculate $C_{\rm E}$ for resistor $R_{\rm E2}^{-}$ 560 Ohms, if the operating frequency is 1000 Hz to 200 KHz.
 - (b) Draw the a.c. equivalent circuit of Fig. 3.
 - (c) Derive the overall voltage gain $V_{\rm L}/V_{\rm S}$.

Figure 1.

Figure 2.

- An adaptor is designed using Figure 4. If the design conditions are determined as:
 - (1) transformer secondary is 12V a.c. at 60Hz, (2) use silicon rectifier 1N4001,
 - (3) use 2500 µf capacitor for C,
 - (4) load current is 0.15 A maximum when load resistance is varying.

Process the following problems:

- (a) Calculate the average voltage of V_0 , (b) Calculate the Maximum voltage of V_{o} .

Figure 4.

- Short answers to the following questions:
 - (a) Draw a Non-inverting summer OPA circuit.
 - (b) Draw a logic circuit to carry out:

$$F = \overline{A} \cdot B + B \cdot C$$

(10%)

(10%)

- A 10-Kg wheel as shown in Figure 6 has a moment of inertia of $I_G = 0.156 \text{ Kg} \cdot \text{m}^2$. Assuming that the wheel does not slip or rebound, determine the minimum velocity $\mathbf{v}_{\mathbf{G}}$ to roll over the obstruction at A. (10%)
- 7. Block D in Figure 7 moves with a speed 3 m/sec. Determine the angular velocity of its link BD and AB, and the velocity of point B at the instant shown on figure. (10%)
 - Write the necessary equations to describe the motion of two masses between three springs as shown in Figure 8. (20%)

Figure 7.

Figure 8.