(14%) 1. If
$$F(x) = \int_0^x t(t-1)e^{-t^2}dt$$
,

- (a) find the points of relative maxima and minima of F(x).
- (b) For what values of x is F'(x) > 0, and for what values of x is F'(x) < 0?

(14%) 2. The Fourier transform of
$$f(x)$$
 is defined as

$$F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x}dx.$$

If
$$f(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

- (a) find $F(\omega)$, and
- (b) show that $|F(\omega)|$ decays as $\frac{1}{\omega}$ as $\omega \to \infty$.

$$(xe^{\nu}-1)dy+e^{\nu}dx=0$$

(14%) 4. Use the method of complex variables to evaluate the integral:

$$I = \int_0^{2\pi} \frac{d\theta}{\cos \theta + 2}$$

- (14%) 5. (a) Find a unit vector perpendicular to the plane 4x + 2y + 4z = -7. (b) A skew-Hermitian form of linear algebra operation is defined
 - b) A skew-Hermitian form of linear algebra operation is defined as $s = \bar{x}^T A x$, where x is a vector, A is a square skew-Hermitian matrix, and \bar{x} denotes the complex conjugate of x. For all possible choice of x, what will be value of s?

國立成功大學八十三學年度航新碩士班考試(工程數學 試題)第2页

(15%) 6. Using the separation of variables method solve the following equation:

$$\begin{cases} u_t - u_{xx} = 0, & 0 < x < 1, \quad t > 0 \\ u(x,0) = \sin 2\pi x, & 0 < x < 1 \\ u(0,t) = u(1,t) = 0, & t > 0 \end{cases}$$

(15%) 7. Consider two coordinate frames S_A and S_B . Let $\overline{e_i}^A$, $\overline{e_i}^B$, i=1, 2, 3 be the orthogonal unit bases fixed to frames A and B with origin at O_A and O_B , respectively. In addition to translation, S_B is rotating in S_A with angular velocity ω (t). \overline{R} (t) is the position vector from O_A to O_B . P is a point with position vector relative to O_B being \overline{r} (t), and \overline{r} (t) is expressed in terms of $\overline{e_i}^B$, i.e., \overline{r} (t) = $\sum_{i=1}^{3} r_i(t)\overline{e_i}^B$. Prove that the acceleration of point P

relative to
$$S_A$$
 is
$$\overline{a}_P = \overset{\dots}{R}(t) + \overset{A-B}{\omega} \times \overline{r}(t) + \overset{A-B}{\omega} \times (\overset{A-B}{\omega} \times \overline{r}) + 2\overset{A-B}{\omega} \times (\overset{3}{\sum} \dot{r}_i \overline{e}_i^B) + \overset{3}{\sum} \ddot{r}_i \overline{e}_i^B$$

(Hint:
$$\frac{d}{dt} \overline{e}_i^B$$
 relative to frame S_A is ω (t) $x \overline{e}_i^B$.)

