國立成功大學八十三學年度 彻太竹硕 地考試(空氣物力學 試題) 第

1) In the two-dimensional incompressible case, let ρ , p, and \bar{V} are density, pressure, and velocity. The Novier-Stokes equation is given as

(1)
$$\begin{cases} \rho \frac{D\vec{V}}{Dt} = \rho f - \text{ grad } p + \mu \nabla^2 \vec{V} \\ \text{div } \vec{V} = 0 \end{cases}$$

where $\frac{D}{R}$ is material derivative and ∇^2 is the Laplace operator.

(a)(6%) If ρ = constant and f = grad φ , prove that (1) implies the vorticity equation

$$\frac{Dw}{Dt} = (w \bullet grad)\vec{V} + \frac{\mu}{\rho}\nabla^2 w$$

where $w = \text{curl } \mathcal{V}$

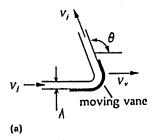
(b) (7%)If ℓ , v/ℓ^2 , U, and $\rho_0 vU/\ell$ where $v = \mu / \rho_0$ are length, time, volocity, and pressure scales, show that in dimensionless form the govering equation (1) Can be written

where $Re \equiv Ul / v$.

 $div \vec{V} = 0$, $\vec{V}_t + \text{Re}(\vec{V} - \text{grad})\vec{V} = -\text{grad} p + \nabla^2 V$

$$\nabla^2 p = 0, \quad \frac{\partial}{\partial t} (\nabla^2 \vec{v}) = \nabla^2 (\nabla^2 \vec{v}).$$

- (b) Prove that the mass flow rate is maximum when the nozzle is choking.

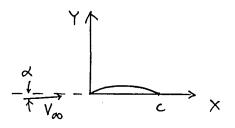

(10%)

(10%)

 P_0 , T_0 , P_b , A and γ .

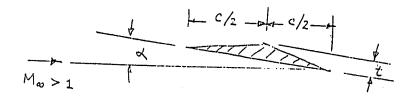
國立成功大學八十三學年度 稅太析及的考試(完氣物力學 試題)第 2页

- 3). (a) A jet of water with density ρ striking a curved vane, which turns the jet through an angle of θ , as shown in Fig. a. The vane is moving to the right at a velocity of V_v , and the jet has a cross-sectional area Λ . Develop an expression for forces, F_x and F_y , exerted on the vane, assuming no frictional loss. (15%)
 - (b) When the vane is stationary, determine F_x and F_y . (5%)



4) Consider a thin airfoil of infinite span in a 2 D steady incompressible inviscid flow. The camber line is an almost flat parabolic arc:

$$Y(x) = a \ x(c-x)$$


where c is the chord length and a is a small constant. The free stream speed is V_{∞} and the angle of attack is α .

- (a) Find the lift distribution $\ell(x)$ on the airfoil as a function of x. (10%)
- (b) Prove that your solution satisfies the Kutta condition. (5%)
- (c) Find the center of pressure Xcp. (5%)

國立成功大學八十三學年度 你太你你你考試(宣氣幼力學 試題) 第 3 页

- 5) A wedge-shaped wing section is flying supersonically as shown in the sketch.
 - (a) Derive the wave drag formula using linearized potential flow model. (10%)
 - (b) Is Kutta condition satisfied? State your reason why Kutta condition should be, or should not be satisfied? (5%)
 - (c) Suggest your way of reducing the wave drag. (5%)

