
線性系統

- 1. Definition of linear system
- 10% (a) Consider a system G, if the input and output of G can be measured, explain how you can determine that G is linear.
- 10% (b) Given a linear system G, please propose three methods to describe the behavior of G.
- 10% (c) The Bode plot of G(s) is given as follows:

If the input signal is $5 \sin 3t + 2 \cos 10t$, please find the output signal.

- 2. Stability of linear system.
- 10% (a) Consider the system:

$$\dot{X} = AX$$
, $X(0) = X_o$, $X \in \mathbb{R}^n$

Find the solution X(t) in terms of the eigenvalues and eigenvectors of A.

10% (b) Prove that the system is unstable, if one of the eigenvalues of A is within the right half plane.

3. For the unity feedback system, as shown in Fig. 3-1, with

$$G(s) = \frac{(-0.2s + 1)}{s(s + 1)[(s^2/25) + 0.4(s/5) + 1]}$$

- (a). Draw the Bode plots for G(jw).(7%)
- (b). Draw the Nyquist plot for G(jw).(7%)
- (c). Draw the Nichols plot (gain-phase) plot for G(jw).(7%)
- (d). Determine the gain margin when the gain K is set for a phase margin of 45°.(5%)
- (e). What is velocity error coefficient K_v when the gain is set for a 45° phase margin? (5%)
- (f). Sketch the root locus versus system gain K and indicate the roots for a phase margin of 45°.(7%)
- (g). Determine the range of K such that the closed-loop system is stable.(7%)
- (h). How to determine closed-loop stability using the Nyquist stability criterion?(5%)

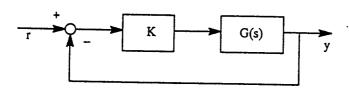


Fig. 3-1.