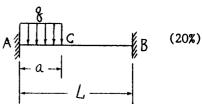

- Please explain the following terminologies 1.
 - a. compatibility
 - b. stress-strain relation
 - c. flexural rigidity
 - d. stiffness
 - e. buckling

(20%)

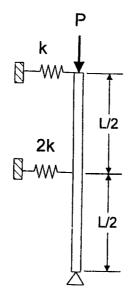
2. Calculate the shear stress τ and the angle of twist ϕ for a steel tube (G = 76 GPa) having the cross section shown in the figure. The tube has length L = 1.0m and is subjected to a torque T =10 kNm.

(20%)


- Consider the beam structure shown below.
 - (a) Draw the diagrams for the distribution of axial force, shear force, and bending moment, respectively, in the beam.
 - (b) Find the maximum axial stress and its location in the beam.
 - (c) Find the maximum shear stress and its location in the beam.
 - (d) What assumptions on the material behavior have been made in obtaining the results above?

L/2L/2L/2

(20%)


86 學年度 國立成功大學 航空太空工程新 科料力学

- 4. A clamped-clamped beam with flexural rigidity EI is acted upon by a uniformly distributed load of intensity q from A to C (see Figure).
 - (i) Determine the reactions at the supports and the equation of the deflection curve.
 - (ii) What are the reactions when a = L?

- (a) A rigid bar hinged at the base is held in a vertical position by two springs: one has a stiffness k and the other, 2k, as shown in the figure. Determine the critical force P_{er} for this system.
 - (b) If the rigidity of the bar is EI instead of being completely rigid, determine the critical force $P_{\rm cr}$.

(20%)

