图學年度 國立成功大學航空太空工程管系所己维:工程力學 試題 第2-1頁

工程力學

(10%) 1. Determine the force in members AD, CD, and CE of the truss shown.

(20%) 2. To the left of point B the long cable ABDE rests on the rough horizontal surface shown. Knowing that the cable weighs 1.8 1b/ft, determine the force F required when a=9 ft. (20%)

(30%) 3. Define the following in terms of Engineering Mechanics

- (1) Newton's Law
- (2) Inertial System
- (3) Perigee and Apogee
- (4) Particle and rigid body
- (5) Mass Center and Principal axes of inertia
- (6) Natural frequency

87 學年度國立成功大學 航空太空工程等新己组:工程力學 試題 共己頁

- (20%) 4. A homogeneous sphere and a homogeneous cylinder roll, without slipping, from rest at the top of an inclined plane to the bottom. The moments of inertia for the sphere and the cylinder are $\frac{2}{5}(W_s/g)r_s^2$ and $\frac{1}{2}(W_c/g)r_c^2$, respectively. The subscripts s and c refer to the sphere and the cylinder respectively. W_s and W_c are the weights, r_s and r_c are the radii of the sphere and the cylinder, respectively. g is gravity.
 - (1) Which reaches the bottom first? Calculate the acceleration.
 - (2) If the sphere and the cylinder are to have rolling with slipping motion. Which reaches the bottom first? Justify your answer by calculating the acceleration.

- (20%) 5. The 0.8-m arm OA for a remote-control mechanism is pivoted about the horizontal x-axis of the clevis, and the entire assembly rotates about the z-axis with a constant speed N=60 rev/min. Simultaneously the arm is being raised at the rate $\beta=4$ rad/s and $\beta=1$ rad/ s^2 .
 - (1) For the position where $\beta = 30^{\circ}$ determine the angular velocity and the angular acceleration of OA.
 - (2) If a collar B is traveling outward to point A at the velocity 0.1 m/sec measured relative to the arm OA. At the instant when OB=0.1 m. Find the velocity and acceleration of the collar in the inertial reference frame.

