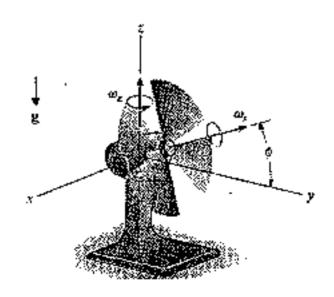

25% 1. The pipe l₂ is rotating about a vertical axis at a rate of ω_s. At the same time, the pipe l₁ is rotating about l₂ at a rate of ω₂ and the R radius disk rotates about pipe l₁ at a rate of ω₁. For the instant CD is vertical to the plane ABC, determine the velocity v_D and the acceleration a_D of point D on the rim of the disk.


25% 2. The R radius wheel is rotating at a constant rate w_0 . The l_1 slender rod AB is connected to the rim of the wheel at A and to the slider B by ball-and-socket joints. For the instant shown when $\theta = 90^\circ$, determine the angular velocity w and angular acceleration α of the rod. Assume that the rod is not rotating about its own axis.

25% 3. The pendulum consists of a mass M sphere of R radius and a mass m slender rod of L length. Compute the angular acceleration of the pendulum and the reaction at the pin O right after the cord AB is cut.

25% 4. The stand of a electric fan is mounted on a fixed support. The moving part of the fan rotates about the z axis at a constant rate of w_z and about x axis at $\phi = a\sin(w_z t)$, and the fan blade is spinning at a constant rate of w_z . Determine the reaction forces and moments at the fixed support. Define necessary parameters of the system for determining the reaction forces and moments.

