16 % 1. Let A,B,C,D
$$\in C^{n \times n}$$
. Consider the maps i. $X \to AX + XB$,

i.
$$X \rightarrow AX + XB$$

ii.
$$X \rightarrow AX + BXC$$

iii.
$$X \rightarrow AX + XBX$$
,

iv.
$$X \rightarrow AX + XB + CX^T$$

are they linear or not, Give brief proof or counter example.

20% 2. Consider a realization {A,b,c} with

$$A = \begin{bmatrix} -0.5 & 1 & 0 \\ -1 & -0.5 & 0 \\ 0 & 1 & 0 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, e' = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- 1. Is the system observable? If not completely observable, what quantities are unobservable?
- 2.In the system controllable? If not completely controllable, what quantities are uncontrollable?
- Suppose A is a linear operator from x into x, a two dimensional vector space. Let u_1, u_2 be a basis for x and

$$Au_1=u_1+2u_2$$

$$Au_2 = 3u_1 + u_2$$

What is the matrix representation of A with respect to u_1, u_2 ?

Let
$$V_1 = u_1 + u_2$$
, $V_2 = u_1 - u_2$. What is the matrix representation of A with respect to V_1, V_2 ?

- (4a) 5% What are the purposes of a control system?
- (4b) 5% Plot a block diagram for a typical control system and explain the functions for each component.
- (4c) 5% Is a human being himself a control system? Why?
- (5) Given a system described by the following input-output relation:

$$\frac{Y(s)}{U(s)} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

- (a) 10% find the gain margin in terms of ω_n and ξ.
- (b) 10% find the phase margin in terms of ω_n and ξ .

图》學年度 國立成功大學 布式空太空 系 泉中生控制 試題 共 2 頁 原 原 原 原 原 原 原 東 1 生 1 計 題 第 2 頁

(6) 15% Consider a system described by

$$\frac{d^2y(t)}{dt^2} + a\frac{dy(t)}{dt} + by(t) = u(t), \ y(0) = 1, \ \dot{y}(0) = 0$$

where u(t) is the control input, y(t) is the output, and a, and b are two given constants. Design a control input u(t) using the feedback of y(t) and $\dot{y}(t)$ such that the output of the system will be in the form

$$y(t) = C_1 e^{-\alpha t} + C_2 e^{-\beta t}$$

where α and β are two given constants. Can you determine C_1 and C_2 uniquely?