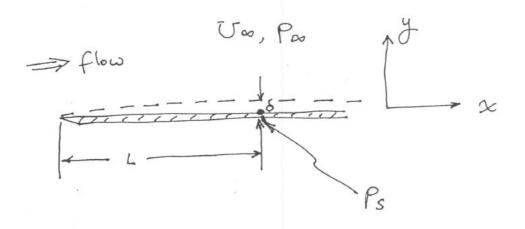

(20%) 1. Consider flow driven by a fan through a duct. See the figure below.

Note That there is a gap between component $\ \ \, \bigcirc \ \,$ and component $\ \ \, \bigcirc \ \,$ see the figure.

 P_{∞} : the ambient pressure


 $P_{A,B,C,D}$: denote the state pressures at the sections A, B, C, D, respectively.

 $m_{A,B,C,D}$: denote the mass flow rates at the sections A, B, C, D, respectively. Choose your answers from the following questions.

- (i) (a) $m_A > m_B$ (b) $m_A = m_B$ (c) $m_A < m_B$
- (ii) (a) $m_C > m_D$ (b) $m_C = m_D$ (c) $m_C < m_D$
- (iii) (a) $P_{\rm A} > P_{\rm \infty}$ (b) $P_{\rm A} = P_{\rm \infty}$ (c) $P_{\rm A} < P_{\rm \infty}$
- (iv) (a) $P_C > P_D$ (b) $P_C = P_D$ (c) $P_C < P_D$

图》學年度國立成功大學 依太 系 流體力學 試題 共了頁項士班招生考試 甲丁组 所 流體力學 試題 第 2頁

(20%) 2. Consider a boundary layer developed on a flat plate. See a schematic drawing below.

 δ : boundary-layer thickness

L: distance from the leading-edge of the plate

 $U_{\scriptscriptstyle \infty}$: freestream velocity

 P_{∞} : freestream pressure

 P_{s} : static pressure measured on the wall

It is a common practice that the static pressure of the freestream can be obtained as the static pressure measured on the wall. Namely, $P_x = P_{\infty}$.

Give your explanation for this common practice.

Hint: 1. Write down the momentum equations of the x and y components.

2. Employ the boundary-layer assumption,

$$\delta << L$$

and check the momentum equations with the dimensional analysis

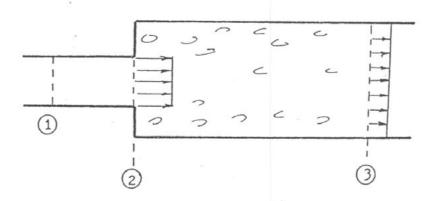
3. A steady two dimensional inviscid velocity field is given as

$$u(x, y) = -\cos(\pi x)\sin(\pi y)$$
,

$$v(x, y) = \sin(\pi x)\cos(\pi y)$$

where u(x, y) and v(x, y) are the x and y Cartesian components of the velocity vector.

- (a) Verify whether or not this is an incompressible flow.
- (b) Verify whether or not this is an irrotational flow.
- (c) Verify whether or not the shear stress τ_{xy} is zero.
- (d) It is known that the derivative of pressure with respective to y has the form


$$\frac{\partial p(x,y)}{\partial y} = C \sin(\pi y) \cos(\pi y)$$

where C is a constant. Derive the value of C from the momentum equation

~ ()

4. An incompressible flow undergoes a sudden expansion from a small to a large cross-sectional area. Assume that the jet profile issuing into the large area is uniform and that between section 2 and 3 the flow mixes out so that it is once again uniform. Neglect wall shear stresses. The principal assumption will be that the pressure along the entire section 2 - including the backward facing wall - is uniform. (Note: if the flow resembled a potential flow, this assumption would be invalid.)

Compute the static pressure coefficient, $(p_2 - p_1)/(\rho V_1^2/2)$ and the stagnation loss coefficient $(p_{o2} - p_{o1})/(\rho V_1^2/2)$ as a function of A_1 and A_2 .

2090

5. For an incompressible two-dimensional flow field, the velocity component in the y direction is given by the equation

$$v = x^2 + 2xy$$

- a) Determine the velocity component in the x direction so that the continuity equation is satisfied.
- b) Use the Navier-Stokes equations to determine an expression for the pressure gradient in the x direction.