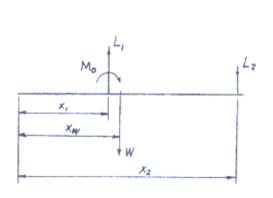
93學年度國立成功大學 航空太空工程學系 丙組 工程力學

共二 頁 第 / 頁


Problem 1. As shown in Fig. p1, a weightless rigid rod is subject to a moment, M_0 , and three forces, L_1 , L_2 , and W, of which the distances from the left end of the rod are x_1 , x_2 , and x_W , respectively. The rod is in static equilibrium.

(a). If
$$M_0$$
, W , x_1 , x_2 , and x_W are given, determine L_1 and L_2 . (10%)

- (b). In the last case, if $M_0 = -0.5$, W = 1, $x_1 = 4$, $x_2 = 10$, and $x_W = 4.5$, determine L_1 and L_2 . (5%)
- (c). Now if x_2 is chosen to minimize the function, $D \triangleq L_1^2 + 7L_2^2$ while the other parameters remain the same as those given above, determine L_1 , L_2 and x_2 . How are you sure that your solutions will minimize but not maximize D? (10%)

Problem 2. For convenience of describing a kinematic problem, it is very often to adopt some multiple coordinate systems. As shown in Fig. p2, OXY is a fixed frame of which the unit vectors associated to the X- and Y- axes are I and J, respectively. On the other hand, oxy is a moving frame of which the unit vectors associated to the x- and y- axes are i and j, respectively. The position vector of point o relative to point O is $\mathbf{R} = X\mathbf{I} + Y\mathbf{J}$ and the velocity of point o relative to the fixed frame is $\mathbf{V} = V_x\mathbf{i} + V_y\mathbf{j}$. The angle between X- and x- axes is $\psi(t) = \Omega t$ where Ω is the angular velocity of the frame oxy relative to the frame OXY and t is the time.

- (a). Given $V_x=1, V_y=2, \dot{V}_x=-0.1, \dot{V}_y=0.3, \Omega=0.5,$ and t=3, represent the velocity of point o in the fixed coordinate system. (10%)
- (b). Use the above data to determine the absolute acceleration of point o (i.e., acceleration relative to the fixed frame) of which the components should be in the moving frame, i.e., represent the absolute acceleration as a = a_x i + b_x j.
 (7%)
- (c). Conversely, if $a_x(t)=2$, $a_y(t)=-1$, $\Omega(t)=0.5$, $\psi(0)=0$, $V_x(0)=0$, $V_y(0)=0$, X(0)=0, and Y(0)=0, determine $V_x(t)$, $V_y(t)$, $\dot{X}(t)$, $\dot{Y}(t)$, X(t), and Y(t).

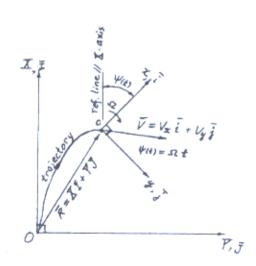


Figure p1: Schematic diagram for Problem 1.

Figure p2: Schematic diagram for Problem 2.

(背面仍有題目,請繼續作答)

Problem 3. A uniform slender bar of length 1 m and mass 1 kg is moving on a smooth horizontal surface. If the velocities at ends A and B are, respectively, 1 m/sec and 2m/sec in the positive x-direction when a horizontal force F = 10N is applied at end A. Determine the accelerations of ends A and B during application of force F.

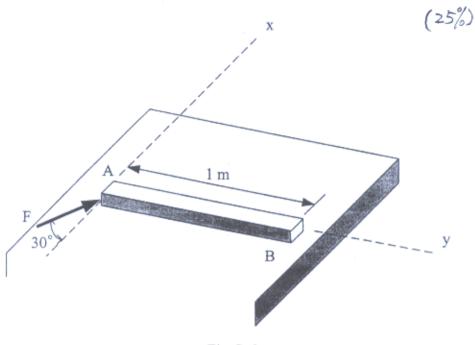


Fig. P. 3

Problem 4. The solid circular cylinder is released from rest on the 60° incline. Calculate the angular velocity ω of the cylinder and the linear velocity v of its center G after it has moved 3 m down the incline. The coefficient of friction is f=0.3.

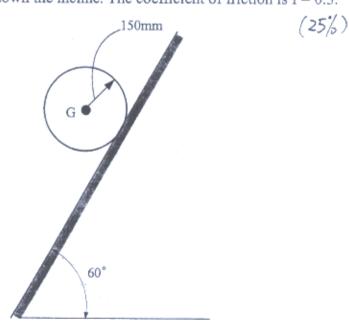


Fig. P. 4