編號:

154

國立成功大學九十七學年度碩士班招生考試試題

共 2 頁,第/頁

系所: 航空太空工程學系丙組

科目:自動控制

本試題是否可以使用計算機: ②可使用

7可使用 , 口不过

(請命題老師勾選)

考試日期:0301,節次:1

1. Consider a rotating system with

$$\dot{\omega}(t) + 3\omega(t) = f(t)$$
 and $\dot{\theta}(t) = \omega(t)$,

where f(t) is the input torque, $\omega(t)$ is the angular rate, and $\theta(t)$ is the output angle of the system.

- a) Draw a block diagram, including a controller K, and label with necessary symbols to represent a feedback control of the rotating system. (7%)
- b) Find K for the above system damping ratio to be 0.6. (6%)
- c) Use K in b) and derive time response $\theta(t)$ if desired angle $\theta_r = 1$ and initial conditions $\theta(0) = 0$ and $\omega(0) = 0$. (12%)

2. The controller and plant of a feedback system are given as

$$G_c(s) = \frac{ms+n}{s}$$
 and $G_c(s) = \frac{1}{(s-1)(s^2+2s+6)}$.

- a) Find the area on the m-n plane for the system to be stable. Note that m>0 and n>0, and use m as horizontal and n as vertical axis. (15%)
- b) For n = 0, determine m and the associated poles for the system to be oscillate continuously when it is excited. (10%)

(注意:背面還有題目)

(背面仍有題目,請繼續作答)

編號: 154

國立成功大學九十七學年度碩士班招生考試試題

系所: 航空太空工程學系丙組

科目:自動控制

本試題是否可以使用計算機: ☑可使用 , □不可使用

(請命題老師勾選)

考試日期:0301,節次:1

共 2 頁,第2頁

 $\frac{1}{\alpha}$, $\alpha > 0$, we are interested in the (3). For the system shown in Figure 1 with G(s) =

variation of the closed-loop poles as the parameter α is changed.

- a). Sketch the root locus as the parameter α is varied. (10%)
- b). Find the range for the parameter α so that the system has underdamped step response. (10%)
- c). Find the steady-state error for the ramp input r(t) = t, $t \ge 0$ if $\alpha = 1$. (10%)

- (4). For the system shown in Figure 1 with $G(s) = kG_p(s)$, Figure 2 shows the Bode diagram of the plant $G_p(s)$.
 - a). Find the following four quantities of the system for k=1. The phase crossover frequency ω_p , the gain margin GM, the gain crossover frequency ω_g and the phase margin PM. (10%)
 - b). k = ? if we want $GM = 6^{db}.(10\%)$

