編號:

155

國立成功大學九十八學年度碩士班招生考試試題

共2頁,第/頁

系所組別: 航空太空工程學系丙組

考試科目: 自動控制

考試日期:0307:節次:1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

1. A control system has two forward paths as shown in Figure 1.

Figure 1

10%(A). Determine the overall transfer function T(s) = Y(s)/R(s).

5%(B). Suppose that
$$Q(s) = \frac{k}{s}$$
, $G(s) = \frac{1}{s+3}$, $M(s) = 2$, $U(s) = 4$, $H(s) = 1$
Is the system stable for any $k > 0$? Explain why.

10%(C). Suppose that k=2, what is the response y(t) for the impulse input $r(t) = \delta(t)$ in (B)?

Figure 2

- 5% (A). Find the range of gain k so that the system is stable.
- 5% (B). Draw the root locus for the system.

(只要用觀念畫出根軌跡走勢即可,不要求太詳細.)

- 5%(C). What is the steady-state error e_{step} of the system for a unit step input?
- 5%(D). What is the minimum steady-state error e_{ramp} of the system for a unit ramp input?
- 5%(E). If we set k = 1, what is the approximated settling time t_s of the step response?

(背面仍有題目,請繼續作答)

編號:

155

國立成功大學九十八學年度碩士班招生考試試題

共 2 頁 第 2 頁

系所組別: 航空太空工程學系丙組

考試科目: 自動控制

考試日期:0307,節次:1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

3. Consider the open-loop transfer function of a negative unity feedback system

$$G(s) = \frac{K(s+1)}{s(s-2)(s^2+4s+30)}.$$

- a) Draw the Nyquist plot for the system. (15%)
- b) Determine from the plot in a) what is the stability range of K for the system to be stable. (10%)

4. The characteristic equation of a closed-loop system is

$$s^3 + 8s^2 + (k - 20)s + 2k = 0$$
 and $k = 40$.

- a) Draw the Bode plot for the system. (10%)
- b) Compute the phase margin. (10%)
- c) Is the system stable? (5%)