編號：
系所組別：系統及船舶機電工程學系丁組
考試科目：電路學
請勿在本試䪶紙上作答，否則不予計分
Problem \＃1：（ 14 points， 2 pts each）Please write your answers on the answer sheet
Use the passive sign convention and the dot conventions to write expressions for the voltage（v）， current $(i)$ ，power absorbed $(p)$ ，or energy stored（ $w$ ），as specified by each of the problems below．
a．

$v_{1}=$ $\qquad$
$v_{2}=$ $\qquad$
b．

$v_{1}=$ $\qquad$
$v_{2}=$ $\qquad$
c．


$$
\begin{aligned}
& v_{2} / v_{1}= \\
& i_{2} / i_{1}=
\end{aligned}
$$

d．

$v_{2} / v_{1}=$ $\qquad$
$\dot{i}_{2} / i_{1}=$ $\qquad$
e．

$i=$ $\qquad$
$w=$ $\qquad$
f．


$$
v=
$$

$\qquad$
$p=$ $\qquad$
g．

$v=$ $\qquad$
$p=$ $\qquad$

## 系所組別：系統及船舶機電工程學系丁組

## Problem \＃2：（ 10 points， 1 pts each）

Please write either True（T）or False（F）on the answer sheet for the following questions．
a．By convention，the direction of current is defined as the direction of positive charge flow．
b．The passive sign convention is satisfied if the labeled current is leaving the terminal labeled with the negative polarity，＂－＂．
c．An ideal current source that produces a current of 0 A is equivalent to a short circuit．
d．Kirchhoff＇s laws tell us how the voltage and current within a circuit element are related．
e．Phasors are complex numbers that represent the phase and amplitude of sinusoidal signals．
f．Any two terminals in a circuit containing operational amplifiers，dependent sources，independent sources，and resistors is electrically equivalent to a Norton equivalent current source in parallel with the Norton equivalent resistance．
g．The＂real＂model of operational amplifiers is less accurate that the＂ideal＂model，but we use the ＂real＂model because it simplifies analysis．
h．Capacitors，inductors，and dependent sources are called＂energy storage＂elements because they cannot dissipate or produce power．
i．The ideal model of an operational amplifier has an infinite input resistance and gain．
j．Source transformations combined with phasors enable us to solve for the steady－state response of circuits containing independent sinusoidal sources operating at different frequencies．

## Problem \＃3：（16 points）

Your answers to the following questions should include the voltage $V_{\mathrm{s}}$ and should not include the voltages $V_{\mathrm{a}}, V_{\mathrm{b}}, V_{\mathrm{c}}$ ，or $V_{\mathrm{d}}$ ，or the currents $I_{3}, I_{\mathrm{X}}, I_{\mathrm{s}}$ ，or $I_{4}$ ，unless otherwise specified．
a．（4 pts）Write expressions for $V_{\mathrm{a}}, V_{\mathrm{b}}$ ，and $V_{\mathrm{c}}$ ．
b．（2 pts）Write an expression for $I_{3}$ ．
c．$(2 \mathrm{pts})$ Write an expression for $V_{\mathrm{d}}$ ．
d．（2 pts）Write an expression for $I_{4}$ ．
e．（2 pts）Write an expression for $\mathrm{I}_{4}$ ．Your answer should not include $V_{\mathrm{s}}$ and should include $I_{\mathrm{s}}$ ．
f．（2 pts）What is the equivalent impedance
 seen by the voltage source？Your answer should not include $V_{\mathrm{s}}$ or $I_{\mathrm{s}}$ ．
g．（2 pts）What type of circuit element does this equivalent impedance resemble？Choose one． Resistor Inductor Capacitor Linear Transformer

## Problem \＃4：（ 10 points， 5 pts each）

（a）A series $R L C$ circuit contains a resistor $R=3 \Omega$ and a capacitor $C=4 \mathrm{~F}$ ．Select the value of the inductor so that the circuit is critically damped．
（b）Design a parallel $R L C$ circuit with $R \geq 1 \mathrm{k} \Omega$ that has the characteristic equation

$$
s^{2}+2 \times 10^{7} s+2 \times 10^{14}=0
$$

If we let $R=1 \mathrm{k} \Omega$ ，please find the values of $L$ and $C$ ．

## 系所組別：系統及船舶機電工程學系丁組

考試科目：電路學

## Problem \＃5：（ 20 points）

Find $V_{0}$ in the figure using Thevenin＇s theorem．


## Problem \＃6：（ 15 points）

Find $v$ for $\mathrm{t}>0$ if the circuit is in steady state at $\mathrm{t}=0^{-}$in the network shown．


## Problem \＃7：（ 15 points）

Find the AC steady state voltage $v$ in the network shown．


