系所組別：系統及船舶機電工程學系丁組

1．For a plant $\mathrm{G}_{\mathrm{p}}(s)=\frac{\omega_{n}^{2}}{s\left(s+2 \xi \omega_{n}\right)}$ （20\％）
（a）Design a PID controller $\mathrm{G}_{\mathrm{c}}(\mathrm{s})$ and draw unity feedback form block diagram
（b）Give an electronic－circuit realization of the PID controller in（a）find the gains of $\mathrm{G}_{\mathrm{c}}(\mathrm{s})$ ．（Represented it by R and C in your circuit）
$2, ~(a)$ In Figure 1，using capacitor voltage and inductor current as state variables，current $\mathrm{Y}(\mathrm{t})$ as output，write dynamic equation．（5\％）
（b） $\mathrm{C}=1 \mu \mathrm{~F}, \mathrm{~L}=100 \mathrm{mH}, \mathrm{R}_{1}=100 \mathrm{k} \Omega, \mathrm{R}_{2}=10 \Omega$ ，whether the system is controllable and observable？（5\％）
（c）In question（b），what＇s the transfer function of the system？and find the poles of the system？（5\％）
（d）According to Figure 2，continue with question（c），design a state feedback controller K so that the Maximum overshoot $\mathrm{M}_{0}=0.1 \%$ ，rise time $\mathrm{t}_{\mathrm{r}}=0.02 \mathrm{sec}$ ．（ 5% ）

Figure 1

Figure 2

3．Consider a controller as given in Figure 3 （ 20% ）
（a）Find the transfer function $V_{0}(s) / V_{i}(s)$ of the controller．
（b）What kind of the controller for $\mathrm{R}_{1}=100 \mathrm{~K}, \mathrm{R}_{2}=400 \mathrm{~K}, \mathrm{C}_{1}=0.3 \mu \mathrm{~F}$ ，and $\mathrm{C}_{2}=0.1 \mu \mathrm{~F}$ ？

Figure 3

4．（a）Write the force equations of the liner translational systems shown in Figure 4．（b） Draw system state diagrams and write the state equations．（c）Find the transfer function $\mathrm{Y}_{1}(\mathrm{~s}) / \mathrm{F}(\mathrm{s})$ and $\mathrm{Y}_{2}(\mathrm{~s}) / \mathrm{F}(\mathrm{s})$ ．(20%)

Figure 4

5．（a）For the translational mechanical system with a nonlinear spring shown in Figure 5， find the transfer function，$G(s)=X(s) / F(s)$ ，for small excursions around $f(t)=1$ ．The spring is defined by $x_{s}(t)=1-e^{-f s(t)}$ ，where $x_{s}(t)$ is the spring displacement and $f_{s}(t)$ is the spring force．（ 5% ）
（b）Given the state description matrices in control canonical form of transfer function $\mathrm{G}(\mathrm{s})$ ，and design a state feedback controller K so that the poles locate at $-3,-5 .(10 \%)$
（c）Check the observability of the state space dynamic equation in（b），and find the observer gain matrix L so that the observer error poles are at -2 and -3 ，respectively． （5\％）

Figure 5

