系所組別：系統及船舶機電工程學系乙組
考試科目：動力學

※ 考生請注意：本試題不可使用計算機

Attention：

In general，a free－body diagram along with your equations is necessary in order to explain the procedures to solve the problem．Mathematical calculation for the answer is not necessary
（1）A small box of mass m is given a speed of $V=\sqrt{\frac{1}{4} g r}$ at the top of the smooth half cylinder．Draw a free－body diagram and explain how to find the angle θ at which the box leaves the cylinder．（15\％）

Fig 1
（2）Use the concept of instantaneous center of zero velocity to find the velocity of point E on link $B C$ and the angular velocity of link $A B$ at the instant shown in Fig 2. （15\％）

Fig 2.
（3）Use a rotating coordinate system attached to rod $A B$ and draw a free－body diagram， then write down all the necessary information and equations in order to find angular velocity and angular acceleration of rod CD．Explain your calculation． （15\％）

Fig． 3

系所組別：系統及船舶機電工程學系乙組

考試科目：動力學
※ 考生請注意：本試題不可使用計算機

Attention：

In general，a free－body diagram along with your equations is necessary in order to explain the procedures to solve the problem．Mathematical calculation for the answer is not necessary
（4）The $20-\mathrm{kg}$ square plate is pinned to the $5-\mathrm{kg}$ smooth collar at A ．Determine the initial linear acceleration and angular acceleration of the plate when $P=100 \mathrm{~N}$ is applied to the collar．The plate is originally at rest．（15\％）

Fig． 4
（5）If a force $\mathrm{F}=200 \mathrm{~N}$ is applied to the $30-\mathrm{kg}$ cart，show that the $20-\mathrm{kg}$ block A will slide on the cart．Also determine the time for block A to move on the cart 1.5 m ．The coefficients of static and kinetic friction between the block and the cart are $\mu_{\mathrm{s}}=0.3$ and $\mu_{\mathrm{k}}=0.25$ ．Both the cart and the block start from rest．（20\％）

Fig 5
（6）A ball having a mass of 8 kg and initial speed of $v_{1}=0.2 \mathrm{~m} / \mathrm{s}$ rolls over a $30-\mathrm{mm}$－long depression．Assuming that the ball rolls off the edges of the contact first A ，then B without slipping，determine its final velocity v_{2} when it reaches the other side． Detail explanation to your equations is required！（20\％）

Fig． 6

