※ 考生請注意：本試題不可使用計算機
1．Consider a difference equation as the following：

$$
y(k)-0.2 y(k-1)-0.64 y(k-2)+0.128 y(k-3)=5 x(k)+4 x(k-1)
$$

Please calculate the transfer function and determine if this system is BIBO stable？Please explain why this transfer function is stable or unstable？（20\％）

2．（i）Find the steady－state errors $e_{s s}$ for the system in Figure 1 with different inputs $r(t)=5 u(t), r(t)=5 t u(t)$, and $r(t)=5 t^{2} u(t) .(10 \%)$

Figure． 1
where $u(t)$ is the unit step function，$R(s), C(s)$ and $E(s)$ are Laplace Transforms of input signal，output signal and error between input and output．
（ii）Find the steady－state errors $e_{s s}$ of system in Figures 2 with respect to the input $r(t)=10 u(t)$ ，and $u(t), R(s), C(s)$ and $E(s)$ are defined as that in（i）．（5\％）

Figure 2
※ 考生請注意：本試題不可使用計算機
3．Consider a controller as shown in Figure 3．Please find the transfer function $V_{o}(s) / V_{i}(s)$ of the controller．（b）Calculate the control output $\nu_{o}(t)$ of the circuit in Figure 3 with circuit parameters $R_{1}=100 \mathrm{~K} \Omega, R_{2}=50 \mathrm{~K} \Omega, C_{1}=30 \mu F, C_{2}=60 \mu F$ and input voltage $v_{i}(t)=5 \mathrm{~V} .(20 \%)$

Figure 3

4．（i）According to the system as shown in Figure 4，please derive the expression of error $E(s) .(15 \%)$

Figure 4
（ii）Suppose $\mathrm{G}_{1}(s)=1000$ and $\mathrm{G}_{2}(s)=\frac{s+2}{s+4}$ ，and please express the steady－state error $e_{s s}$ due to a ramp input $R(s)$ and a unit step disturbance $D(s)$ for the system in Figure 4．（5\％）

編號： 134
國立成功大學102學年度碩士班招生考試試題
系所組別：系統及船舶機電工程學系丁組
考試科目：自動控制
※ 考生請注意：本試題不可使用計算機

5．The dynamic equation of a system is given as below．
（a）Determine whether the system is controllable and observable．（5\％）
（b）Design a state feedback law $u=-k X$ which generates a closed－loop system with eigenvalues $-1,-3-4$ ．（ 10% ）

$$
\dot{X}=\left[\begin{array}{ccc}
-1 & 0 & 3 \\
2 & -1 & -1 \\
-3 & 1 & -2
\end{array}\right] X+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u, y=\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right] X
$$

6．Consider the differential equation $\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=f(x)$ where $f(x)$ is the input and is a function of x ．If $f(x)=\sin x$ ，linearize the differential equation for small excursions． （10\％）
（a）$x=0$
（b）$x=\pi$

