※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．(20%)
Consider the two－dimensional flow field defined by the following velocity components：

$$
u=\frac{v}{1+t}, \quad v=1, \quad w=0
$$

For this flow field find the equation of：
（a）The streamline through the point $(1,1)$ at $t=0$
（b）The pathline for a particle released at the point $(1,1)$ at $t=0$ ．

2．(20%)
A curved surface is formed as a circular arc with $R=0.75 \mathrm{~m}$ as shown in Fig．1．The surface width， W ，is 1.0 m ．Water stands to the right of the curved surface to depth $\mathrm{H}=0.65 \mathrm{~m}$ ．
（a）Find the vertical force exerted on the curved surface．
（b）Find the horizontal force exerted on the curved surface．

Fig． 1

3．（20\％）
At a certain location wind is blowing steadily at $8 \mathrm{~m} / \mathrm{s}$ ．Determine the mechanical energy of air per unit mass and the power generation potential of a wind turbine with 50 －m－diameter blades at that location．Also determine the actual electric power generation assuming an overall efficiency of 30 percent．Take the air density to be $1.25 \mathrm{~kg} / \mathrm{m}^{3}$ ．

系所組別：系統及船舶機電工程學系甲組
考試科目：流體力學
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
4．（20\％）
The velocity potential for a cylinder（Fig．2）rotating in a uniform stream of fluid is $\Phi=U r\left(1+\frac{a^{2}}{r^{2}}\right) \cos \theta+\frac{\Gamma}{2 \pi} \theta$ where Γ is the circulation．For what value of the circulation will the stagnation point be located at：（a）point A ； （b）point B？＂

Fig． 2

5．(20%)
Show that the two－dimensional laminar－flow pattern with $\mathrm{dp} / \mathrm{dx}=0$ ，

$$
\mathrm{u}=\mathrm{U}_{0}\left(1-\mathrm{e}^{C_{y}}\right) \quad v=y_{0}<0
$$

is an exact solution to the boundary－layer equations．Find the value of the constant C in terms of the flow parameters．Are the boundary conditions satisfied？What might this flow represent？

