編號: 134

國立成功大學 106 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:電子學

考試日期:0213,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1 · Choice question (20%)

- (1) The low frequency response of an amplifier is determined in part by (a) the voltage fain, (b) the type of transistor, (c) the supply voltage, (d) the coupling capacitors.
- (2) The Miller input capacitance of an amplifier is dependent, in part, on (a) the input coupling capacitor, (b) the voltage gain, (c) the bypass capacitor, (d) none of these.
- (3) Ideally, the mid-range gain of an amplifier (a) increases with frequency, (b) decreases with frequency, (c) remains constant with frequency, (d) depends on the coupling capacitors
- (4) The purpose of a pentavalent impurity is to (a) reduce the conductivity of silicon (b) increase the number of holes (c) increase the number of free electrons (d) create minority carriers
- Which one is NOT true when a reverse bias is applied to P-N junction. (a) current flows from n-type to p-type region; (b) depletion-layer width increases; (c) diffusion capacitance dominates; (d) breakdown may take place if the reverse voltage is too high
- 2 Sketch v_o versus time for the circuit in Figure 1(a) and (b) with the input shown. Assume $V_{\gamma} = 0$ and $r_f = 0$ for Figure 1(a); $V_{\gamma} = 0.7$ and $r_f = 10\Omega$ for Figure 1(b). (10%)

- 3 The bridge power amplifier is shown in Figure 2. This amplifier has a very high input resistance since the input is to the noninverting terminal of an op-amp. (a)Derive the expression for the voltage gain A_ν=ν_L/ν_I.
 (b) Design the circuit to provide a gain of Aν=10 so that the magnitudes of ν₀₁ and ν₀₂ are equal. Let R₁=50kΩ. (c) If R_L=20Ω and if the average power delivered to the load is 10W, determine the peak amplitude of ν₀₁ and ν₀₂ and the peak load current.
- 4. For each transistor in Figure 3, the parameters are $\beta=100$ and $V_A=\infty$. (a) Determine the Q-point values for both Q_1 and Q_2 . (b) Draw the hybrid- π model of the amplifier circuit. (c) Determine the overall small-signal voltage gain $A_v=v_o/v_s$. (d) Determine the input and output resistances R_{is} and R_o . (20%)

國立成功大學 106 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:電子學

考試日期:0213,節次:2

第2頁,共2頁

編號: 134

5. The circuit in Figure 4 is a low-pass active filter. (a) Derive the voltage transfer function $A_{\nu}=v_0/v_1$ as a function of frequency. (b) At what frequency is the magnitude of the voltage gain a factor of $\sqrt{2}$ less than the dc value? (This is the -3dB frequency.) (c) Design the low-pass active filter, assume the input resistance is $R_1=20 \text{ k}\Omega$, the low frequency gain is -15, and the -3dB frequency is 5kHz. (15%)

6 Consider the basic MOSENT amplifier with active load in Figure 5. The transistor parameters are: $V_{TN}=1V$, $V_{TP}=-1V$, $(\frac{1}{2})\,\mu_n C_{ox}=20\mu A/V^2$, $(\frac{1}{2})\,\mu_p C_{ox}=10\mu A/V^2$ and $\lambda_n=\lambda_p=0.02~V^{-1}$, (a) Design the circuit such that $I_{REF}=I_O=0.1~mA$. Assume M_1 and M_3 are matched, and the quiescent input voltage is $V_{IQ}=2~V$. The quiescent output voltage is to be $V_{OQ}=2.5~V$. (b) Determine the open-circuit small-signal voltage gain. (15%)

Figure 2

Figure 3

Figure 4

Figure 5