編號: 130

國立成功大學 109 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:電子學 考試日期:0210,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1 The cut-in voltage for each diode in the circuit shown in Figure 1 is V_{γ} = 0.7V. Find I_{D1} , I_{D2} , I_{D3} , and V_{A} for (a) R_{3} = 14k Ω , R_{4} = 24k Ω , ; (b) R_{3} = 3.3k Ω , R_{4} = 5.2k Ω ; and (c) R_{3} = 3.3k Ω , R_{4} = 1.32k Ω . (15%)
- 2 The clipper circuit shown in Figure 2. Assume that the two diode $D_1 \cdot D_2$ shown in the circuit below are ideal diodes ($V_{\gamma} = 0$ and $r_f = 0$). If the input voltage in the circuit is a sinusoid with peak amplitude of 6V, sketch the V_0 (15%)
- 3 The PMOS transistor shown in Figure 3 has V_{tp} =-1V, k_p ' = 60 μ A/V², and W/L = 10. (30%)
 - (a) Find the range of V_G for which the transistor conducts. (5%)
 - (b) In terms of V_{G} , find the range of V_{D} for which the transistor operates in the triode region. (5%)
 - (c) In terms of V_{G_i} find the range of V_D for which the transistor operates in saturation region. (5%)
 - (d) Neglecting channel-length modulation (λ =0), find the values of $|V_{OV}|$ and V_{G} and the corresponding rang of V_{D} to operate the transistor in the saturation mode with I_{D} =75 μ A (5%)
 - (e) If $\lambda = -0.02V^{-1}$, find the value of r_o corresponding to the overdrive voltage determined in (d) (5%)
 - (f) For $\lambda = -0.02 V^{-1}$, and for the value of V_{ov} determined in (d), find I_D at $V_D = +3V$ and at $V_D = 0V$; hence, calculate the value of the apparent output resistance in saturation. (5%)

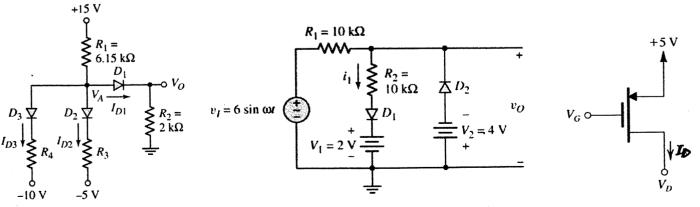


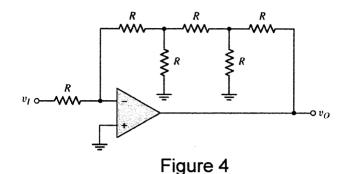
Figure 1

Figure 2

Figure 3

編號: 130

國立成功大學 109 學年度碩士班招生考試試題

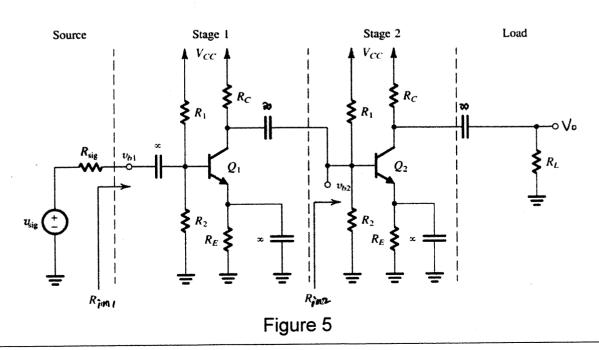

系 所:系統及船舶機電工程學系

考試科目:電子學

考試日期:0210, 節次:2

第2頁,共2頁

4 · For the op-amp circuit shown in Figure 4, determine the gain $A_v = v_O/v_I$. (15%)


- $5 \cdot$ The amplifier of Figure 5 consists of two identical common-emitter amplifiers connected in cascade. Observe that the input resistance of the second stage, $R_{\rm in2}$, constitutes the load resistance of the first stage. (25%)
 - (a) For V_{CC} =15V, R_1 =100k Ω , R_2 =47 k Ω , R_E =3.9k Ω , R_C = 6.8 k Ω , and β =100, (5%) determine the dc collector current and dc collector voltage of each transistor.
 - (b) Draw the small-signal equivalent circuit of the entire amplifier and give the values of all its components. (4%)

(c) Find
$$R_{\rm in1}$$
 and $v_{\rm bl}/v_{\rm sig}$ for $R_{\rm sig}=5~{\rm k}\,\Omega$. (4%)

(d) Find
$$R_{\text{in}2}$$
 and $v_{\text{b2}}/v_{\text{bl}}$. (4%)

(e) For
$$R_L = 2 k \Omega$$
, find v_0/v_{b2} (4%)

(f) Find the overall voltage gain
$$v_0/v_{\text{sig.}}$$
 (4%)

