國立成功大學 110學年度碩士班招生考試試題

編 號: 124

系 所:系統及船舶機電工程學系

科 目:動力學

日 期: 0202

節 次:第2節

備 註: 可使用計算機

國立成功大學 110 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:動力學 考試日期:0202,節次:2

第1頁,共2頁

编號: 124

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 1. As shown in Fig. 1, the platform is rotating about the vertical axis such that at any instant its angular position is $u=(4t^{3/2})$ rad, where t is in seconds. A ball rolls outward along the radial groove so that its position is $r=(0.1t^3)$ m, where t is in seconds. Determine the magnitudes of the velocity v [10%] and acceleration a [10%] of the ball when t=1.7 s.

- 2. As shown in Fig.2, The motor M pulls in its attached rope with an acceleration $a_p = 6.4 \, \text{m/s}^2$. Determine the towing force T_M [10%] exerted by M on the rope in order to move the 50-kg crate up the inclined plane. The coefficient of kinetic friction between the crate and the plane is $\mu_k = 0.3$. Neglect the mass of the pulleys and rope. Also, determine the acceleration of the crate a_C [10%].
- 3. As shown in Fig. 3, the 12-kg slender rod is pinned to a small roller A that slides freely along the slot. If the rod is released from rest at θ = 0°, determine the angular acceleration α [10%] of the rod and the acceleration α_A [10%] of the roller immediately after the release.

編號: 124 國立成功大學 110 學年度碩士班招生考試試題

所:系統及船舶機電工程學系

考試科目:動力學

考試日期:0202,節次:2

第2頁,共2頁

4. Two smooth billiard balls A and B have an equal mass of m = 200 g. If A strikes B with a velocity of $(v_A)_1 = 4$ 2.3 m/s as shown in Fig. 4a. Ball B is originally at rest and the coefficient of restitution is e = 0.72. Line of impact is along the x-axis. Determine their final velocities (magnitudes in m/s) and moving directions (degree) just after collision: $(v_A)_2$, θ_2 , $(v_B)_2$, ϕ_2 , see Fig. 4b. [20%]

Fig. 4a Right before collision

Fig. 4b Just after collision

5. At the given instant member AB has the angular motions shown in Fig. 5. Determine the velocity v_c [10%] and acceleration a_{C} [10%] of the slider block C at this instant.

Fig. 5