國立成功大學 111學年度碩士班招生考試試題

編 號: 129

系 所:系統及船舶機電工程學系

科 目:電子學

日 期: 0219

節 次:第2節

備 註: 可使用計算機

國立成功大學 111 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:電子學 考試日期:0219,節次:2

第1頁,共2頁

編號: 129

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1 If, for a particular junction, the acceptor concentration is $10^{17}/\text{cm}^3$ and the donor concentration is $10^{16}/\text{cm}^3$, (a) find the junction built-in voltage. Assume $n_i = 1.5 \text{ x}$ $10^{10}/\text{cm}^3$. Also, (b) find the width of the depletion region (W) and its extent in each of the p and n regions when the junction terminals are left open. (c) Calculate the magnitude of the charge stored on either side of the junction. Assume that the junction area is 100 µm^2
- 2 · For the circuit in Figure 1, (a) Derive the expression for v₀ in terms of v_{II} and v_{I2}, and (b) Find v₀ if v_{II}=1+2sinωt mV and v_{I2}=-10mV.
 (15%)

- 3 · For the op-amp circuit shown in Figure 2, Determine the gain $A_v = v_0/v_I$. (15%)
- 4 For the devices in the circuit of Figure 3, $|V_t| = 0.5V$, $\lambda = 0$, $\mu_n C_{ox} = 400 \,\mu\text{A/V}^2$ L=0.5 μ m, and W=0.5 μ m, Find V_2 and I_2 . How do these values change if Q₃ and Q₄ are made to have W=5 μ m? (15%)

國立成功大學 111 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:電子學

考試日期:0219,節次:2

第2頁,共2頁

編號: 129

5 • The parameters for each transistor in the circuit shown in Figure 4 are β=100 and V_A=∞.
(a) Determine the small-signal parameters g_m, r_π, and r_o for both transistors. (b) Determine the small-signal voltage gain A_{v1}=v_{o1}/v_s, assume v_{o1} is connected to an open circuit, and determine the gain A_{v2}=v_o/v_{o1}. (c) Determine the overall small-signal voltage gain A_v=v_o/v_s. Compare the overall gain with the product A_{v1} · A_{v2}, using the values calculated in part (b).
(20%)

6 • For the PMOS common-source circuit shown in Figure 5, the transistor parameters are $V_{TP} = -2V$, $K_p = 1 \text{mA/V}^2$, $\lambda = 0$, $C_{gs} = 15 \text{pF}$, and $C_{gd} = 3 \text{pF}$. (a) What is the equivalent Miller capacitance? (b) Determine the upper 3dB frequency. (c) Find the midband voltage gain. (20%)

 $R_{1} = 8 \text{ k}\Omega$ $R_{1} = 8 \text{ k}\Omega$ $R_{2} = 0.5 \text{ k}\Omega$ $R_{3} = 0.5 \text{ k}\Omega$ $R_{3} = 0.5 \text{ k}\Omega$ $R_{4} = 0.5 \text{ k}\Omega$ $R_{5} = 0.5 \text{ k}\Omega$ $R_{7} = 0.5 \text{ k}\Omega$ $R_{8} = 0.5 \text{ k}\Omega$ $R_{1} = 0.5 \text{ k}\Omega$ $R_{2} = 22 \text{ k}\Omega$ $R_{3} = 0.5 \text{ k}\Omega$ $R_{4} = 0.5 \text{ k}\Omega$ $R_{5} = 0.5 \text{ k}\Omega$ $R_{7} = 0.5 \text{ k}\Omega$ $R_{8} = 0.5 \text{ k}\Omega$ $R_{1} = 0.5 \text{ k}\Omega$ $R_{2} = 22 \text{ k}\Omega$ $R_{3} = 0.5 \text{ k}\Omega$ $R_{4} = 0.5 \text{ k}\Omega$ $R_{5} = 0.5 \text{ k}\Omega$ $R_{7} = 0.5 \text{ k}\Omega$ $R_{8} = 0.5 \text{ k}\Omega$ $R_{1} = 0.5 \text{ k}\Omega$ $R_{2} = 0.5 \text{ k}\Omega$ $R_{3} = 0.5 \text{ k}\Omega$