國立成功大學 114學年度碩士班招生考試試題

編 號: 104

系 所:系統及船舶機電工程學系

科 目:電子學

日 期: 0210

節 次:第2節

注 意: 1.可使用計算機

2.請於答案卷(卡)作答,於 試題上作答,不予計分。

- 一、選擇題: (20分, 每題2分)
- 1. The atomic number is the number of
 - a. protons in the nucleus
 - b. neutrons in the nucleus
 - c. protons plus neutrons in the nucleus
 - d. electrons in the outer shell
- 2. Valence electrons are
 - a. in the outer shell
 - b. involved in chemical reactions
 - c. relatively loosely bound
 - d. all of the above
- 3. The atomic particle responsible for electrical current in solid metallic conductors is the
 - a. proton
 - b. electron
 - c. neutron
 - d. all of the above
- 4. For constant voltage in a circuit, doubling the resistance means
 - a. halving the current
 - b. doubling the current
 - c. there is no change in the current
 - d. depends on the amount of voltage
- 5. Holding the voltage constant, and plotting the current against the resistance as resistance is varied will form a
 - a. straight line with a positive slope
 - b. straight line with a negative slope
 - c. hyperbola
 - d. parabola
- 6. A battery stores
 - a. electrons
 - b. protons
 - c. ions
 - d. chemical energy
- 7. The unit of conductance is the
 - a. ohm
 - b. coulomb
 - c. siemen
 - d. ampere

- 8. A four-color resistor with the color bands gray-red-black-gold is
 - a. 73 Ω
 - b. 82 Ω
 - c. 680 \Darktern \Omega
 - d. 820 Ω
- 9. A 330 kW ± 5% resistor has the color bands
 - a. red-red-brown-gold
 - b. orange-orange-yellow-gold
 - c. yellow-yellow-red-gold
 - d. yellow-yellow-green-gold
- 10. The circular mil is a unit of
 - a. length
 - b. resistance
 - c. volume
 - d. area
- 二、計算題: (80分)
 - 1. The figure shows a Zener diode regulator circuit. It is given that $V_B=45\,$ V, $V_Z=24\,$ V, $I_Z=5\,$ mA, $r_Z=20\,$ Ω, $R_L=12\,$ kΩ. $(25\,$ \bigcirc \bigcirc , 每小題 $5\,$ \bigcirc \bigcirc

- (a) In the large signal model of the Zener diode, what is the voltage V_{Z0} ?
- (b) What is the values of I_L and I_1 ?
- (c) What is the required value of R_1 ?
- (d) Calculate the power dissipated in R_1 , in the Zener diode, and in R_L .
- (e) If the load current doubles, calculate the decrease in the voltage across the Zener diode.
- 2. The figure shows a MOSFET circuit. It is given that $V^+=18$ V, $R_1=7.5$ kΩ, $R_2=500$ Ω, K=0.001 A/V², and $V_{TH}=1.5$ V. (25 分)
 - (a) Find the value of V_1 required to obtain a drain-to-source voltage of 10 V. (20 分)
 - (b) Calculate the power dissipation in the MOSFET. (5 分)

- 3. A half-wave rectifier is shown. It is given that $v_S(t)$ is a 60 Hz sinusoidal voltage with an rms value of 24 V. When the diode is forward biased, its voltage drop is $V_{D0}=0.6\,$ V. The circuit values are $R_L=200\,$ Ω and $C=1000\,$ $\mu F.$ (30 Ω) 每小題 Ω)
 - (a) Calculate the peak load voltage.
 - (b) Calculate the maximum reverse bias voltage across the diode.
 - (c) The percent ripple is given by % ripple = $[1 \exp(-T/R_LC)] \times 100\%$. When the diode is off, what is the lowest value that the load voltage can "droop" to before the diode conducts again?

