245

編號: 今 243 系所: 系統及船舶機電工程學系甲組 2 25 科目: 工程數學

(10%) #1. Find the general solution of y'' - 2y' + y = e'.

(10%) #2. Find the general solution of $t^3y''' + t^2y'' - 2ty' + 2y = t^{-2}$

(15%) #3. Solve the free vibration problem of an under-damped system:

$$my'' + cy' + ky = 0$$
, $y(0) = y_0$, $y'(0) = 0$, with $4mk > c^2$.

- (a) Express your solution in terms of $\omega = \sqrt{k/m}$, $\xi = c/2m\omega$, $\omega_D = \omega\sqrt{1-\xi^2}$.
- (b) Plot the solution.
- (c) Indicate how you can evaluate the two system ratios k/m, c/m if you are conducting an experiment with known value of m.
- (05%) #4. Solve the simultaneous differential equations

$$\begin{cases} x' + 5x + y' + 4y = e^{-t} \\ x' + 2x + y' + y = 3 \end{cases}$$

(05%) #5. Find the Laplace transform of $\frac{e^{-at} - e^{-bt}}{t}$

(15%) #6. If the Fourier transform of x(t) is defined as

$$F\{x(t)\} = X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-i\omega t) dt$$
. Find the Fourier transforms of

(a)
$$x(t-\tau)$$
, (b) $x(\frac{t}{s})$, (c) $\frac{1}{\sqrt{s}}x(\frac{t-\tau}{s})$

(10%) #7. If
$$\vec{V} = (x^2 + y^2 x)\vec{i} + (y^2 + x^2 y)\vec{j}$$
, calculate $\int_{(0,1)}^{(1,2)} \vec{V} \cdot d\vec{r}$.

(20%) #8. Solve the following boundary value problem:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad 0 \le x \le 1, \qquad 0 \le y \le 1$$

$$u(0, y) = 0$$
, $u(1, y) = f(y)$, $\frac{\partial u}{\partial y}(x, 0) = 0$, $\frac{\partial u}{\partial y}(x, 1) = 0$

(10%) #9. Evaluate the following complex integrals

(a)
$$\int_{1-i\infty}^{1+i\infty} \frac{ze^{zt}}{z^2+1} dz$$
, (b) $\int_{1-i\infty}^{1+i\infty} \frac{e^{zt}}{z^2+1} dz$