編號: 7 250 系所:系統及船舶機電工程學系丁組

科目:電路學

A total of six problems are given below.

- 1. (16%) The circuit in Fig. 1 shows a circuit for a voltage source and "potentiometer" (電位 計), which is a resistor with a sliding contact. The variable "a" varies from 0 to 1, and the open-circuit voltage v_{out} increases in proportion with a.
- (a) Determine a Thevenin equivalent circuit, as indicated in the right hand side of Fig. 1, for the voltage source, with the voltage and output impedance functions of a.
- (b) What is the maximum output resistance if the total resistance of the potentiometer is R?
- (c) If the load resistor for this Thevenin equivalent circuit (i.e., connecting to v_{out}) were equal to the resistance of the potentiometer, R, what would a have to be to give an output voltage of 0.5 V_s ?

Fig. 1

- 2. (16%) The switch S_I in Fig. 2 has been closed for a long time. At t = 0 s, S_I is opened at the same instant S_2 is closed to avoid an interruption in current through the inductor.
- (a) Find the general solution for i_L following the closing of S_2 .
- (b) Sketch i_L for positive time.

Fig. 2

(背面仍有題目,請繼續作答)

編號: 万 250 系所:系統及船舶機電工程學系丁組

科目:電路學

- 3. (16%) Consider the circuit shown in Fig. 3, answer the following questions:
- (a) What is the undamped resonant frequency and the damping coefficient?
- (b) Find the general solution for v(t), giving the numerical values of all parameters. Assume that the initial conditions are $v(0^+)=0$ and $i_I(0^+)=0$.

 $R = 25 \Omega L = 10 \mu H C = 1000 pF$

Fig 3

- 4. (16%) The switch shown in Fig. 4 is in position a for negative time, moved to b at t = 0, and to c at t = 5 ms.
- (a) Sketch v_C for 0 < t < 20 ms.
- (b) At what time should the switch be switched to c for no "transient"? (無暫態)

Fig. 4

- 5. (20%) Complex frequency is used to solve a circuit problem. The circuit impedance has the pole-zero patter shown in Fig. 5 and has an impedance magnitude of 10 Ω at $s = 1 \text{ s}^{-1}$. The circuit is excited by a voltage source that is zero for negative time and has a value of $v(t) = 5\cos(3t)$ for positive time.
- (a) Find the impedance **Z(s)** for the circuit.

(b) Determine the total response of the current into the circuit for positive time, assuming zero for the initial value and initial derivative of the current.

Fig. 6

編號: 4 250 系所:系統及船舶機電工程學系丁組

科目:電路學

6. (16%) By proper choice of X_C and X_L , the 10- Ω resistance in Fig. 6 can be transformed to "look" like a 50- Ω resistor (i.e., the impedance $Z = 50 + j0 \Omega$) at a specified frequency. Find X_C and X_L and, from them, C and L to accomplish this transformation at 1 kHz.

