編號: 184 系所: 系統及船舶機電工程學系丁組

科目:自動控制

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

1. (10%) Determine transfer function $\frac{Y(s)}{U(s)}$ for the block diagram shown in Fig. 1.

Fig. 1

- 2. (20%) For the mass-damper-spring mechanical system shown in Fig. 2 (neglecting all frictions)
- (a) Find $G(s) = \frac{Y(s)}{U(s)}$ (8%)
- (b) Let $x_1 = y$, $x_2 = \dot{x}_1$. $\dot{x} = Ax + Bu$ y = Cx + EuDetermine A, B, C, and E matrices. (7%)

Fig. 2

- (c) For m=5 Kg, k=10 N/m, b=15 Ns/m, find the state transition matrix $\phi(t)$. (5%)
- 3. (20%) As shown in Fig. 3,
- (a) Find the steady-state error in terms of K and K_t when the input is a unit-ramp function. Give the constraints on the values of K and K_t so that the answer is valid. Let n(t)=0 for this part. (10%)
- (b) Find the steady-state value of y(t) when n(t) is a unit-step function. Let r(t)=0. Assume that the system is stable. (10%)

國立成功大學九十五學年度碩士班招生考試試題

共 2 頁·第2頁

編號: 184 系所: 系統及船舶機電工程學系丁組

科目:自動控制

本試題是否可以使用計算機: 「如可使用 」 「一不可使用 (請命題老師勾選)

- 4. (25%) For the control system shown in Fig 4,
- (a) Find K_I so that the ramp-error constant K_v is 10. (12%)
- (b) Find K_p so that the magnitude of imaginary parts of the complex roots of the characteristic equation for the system is 15 rad/sec. (8%) Determine the roots of the characteristic equation. (5%)

5. (25%) A control block diagram is shown in Fig. 5, with G_c to be determined from the following two cases.

(i)
$$G_c = \frac{9A}{(5+4A)+4s} A > 0$$
 or

(ii)
$$G_c = \frac{4(B+8)}{(B+8)+s}$$
 $B > 0$

The system requires (I) damping ratio $1 > \zeta \ge 0.707$, (II) settling time $t_s \le 0.8$ and (III) steady-state error $e_{SS} < 2\%$ for step input.

- (a) Determine which one [case (i) or (ii)] can be used to achieve the above specification (15%)
- (b) Estimate the range of A or B or both, for which the specification remains satisfied. (10%)

