1．Solve the initial value problem．（ $10 \%$ ）

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=30 e^{-x}, y(0)=3, y^{\prime}(0)=-3, y^{\prime \prime}(0)=-47
$$

2．Solve the differential equation by power series method．（ $10 \%$ ）

$$
y^{\prime \prime}+y=0
$$

3．Solve the differential equation by Laplace Transform．（ $10 \%$ ）

$$
y^{\prime \prime}+y=2 t, y\left(\frac{\pi}{4}\right)=\frac{\pi}{2}, y^{\prime}\left(\frac{\pi}{4}\right)=2-\sqrt{2}
$$

4．Explain the Fourier Transform in detail and describe the physical meaning of Fourier Transform． （10\％）

5．Find the inverse of matrix $\mathbf{A}$ ，if it exists．（ $10 \%$ ）

$$
\mathbf{A}=\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{array}\right]
$$

6．（a）Find an LU factorization of matrix A ，where L is a lower triangular matrix and U is upper triangular matrix．（7\％）

$$
\mathbf{A}=\left[\begin{array}{ccccc}
2 & 4 & -1 & 5 & -2 \\
-4 & -5 & 3 & -8 & 1 \\
2 & -5 & -4 & 1 & 8 \\
-6 & 0 & 7 & -3 & 1
\end{array}\right]
$$

（b）Explain the purposes of LU factorization．（3\％）

7．Let matrix $\mathbf{A}$ be a $\mathrm{n} \times \mathrm{n}$ invertible matrix．Check that if the following statements are equivalent．
Answer true or false．（ $10 \%$ ）
（a）The equation $A x=b$ is consistent and has infinite solutions．
（b）The columns of $\mathbf{A}$ form a linearly dependent set．
（c）A has n pivot positions．
（d） $\mathbf{A}^{\mathrm{T}}$ is an invertible matrix．
（e）The linear transformation $x \mapsto \mathbf{A} x$ is one－to－one and onto．
（f） $\operatorname{det} \mathbf{A}=0$ ．
（g）rank $\mathbf{A}=\mathrm{n}$ ．
（h） $\operatorname{dim}(\operatorname{ColA})=\operatorname{dim}(\operatorname{Nul} A)=n$ ．
（i）The columns of $\mathbf{A}$ form a basis of $\mathrm{R}^{\mathrm{n}}$ ．
（j） $\mathbf{A x}=0$ has only the trivial solution．

8．（a）Find a least－squares solution of $\mathbf{A x}=\mathbf{b}$ for（ $7 \%$ ）

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right]
$$

（b）Explain the geometric meaning of least－squares solutions（3 \％）

9．Diagonalize the matrices if possible $\left(A=P D P^{-1}\right.$ for some invertible matrix P and some diagonal matrix D）．$(10 \%)$
（a）$\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
（b）$\left[\begin{array}{ccc}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$

10．Given a scalar function $\mathbf{u}(x, y, z)=z y+y x$ and a vector function $\mathbf{v}(x, y, z)=[y, z, 4 z-x]$ ，find（a） $\nabla \mathbf{u}$ ，（b）$\nabla \cdot \mathbf{v}$ ，（c）$\nabla \times \mathbf{v}$ ，（d）$\nabla^{2} \mathbf{u}$ ，（e）$\nabla \times(\nabla \times \mathbf{v})$ ，where $\nabla$ is the gradient operator and $\nabla^{2}$ is the Laplace operator（ $10 \%$ ）

