※ 考生請注意：本試題不可使用計算機
1．Given a nonhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x), r(x) \neq 0 \tag{1}
\end{equation*}
$$

and its corresponding homogenous equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Prove that the sum of a solution of Eq．（1）and a solution of Eq．（2）is a solution of Eq．（1）．（ $10 \%$ ）

2．Let $f(\mathrm{x})$ be a periodic function of period $2 \pi$ ．Prove that $f(\mathrm{x})$ can be represented by the trigonometric series：（ $15 \%$ ）

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad n=1,2, \cdots \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x, \quad n=1,2, \cdots
\end{aligned}
$$

3．Find the Fourier series of the function $(10 \%)$

$$
f(x)= \begin{cases}0, & \text { if }-2<x<-1 \\ k, & \text { if }-1<x<1 \\ 0, & \text { if } 1<x<2\end{cases}
$$

4．Show that the vector set $\mathbf{V}$ is linearly independent．$(10 \%)$

$$
\mathbf{V}=\left\{\left[\begin{array}{l}
0 \\
1 \\
5
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
8
\end{array}\right],\left[\begin{array}{c}
4 \\
-1 \\
0
\end{array}\right]\right\}
$$

5．Let $T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 5 x_{1}+7 x_{2}, x_{1}+3 x_{2}\right)$ ．
（a）Show that $T$ is a one－to－one linear transformation．（5 \％）
（b）Does $T$ map $\boldsymbol{R}^{2}$ onto $\boldsymbol{R}^{3}$ ？（show the details）（ $5 \%$ ）
※ 考生請注意：本試題不可使用計算機

6．Let $\mathbf{b}_{1}=\left[\begin{array}{c}-9 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}-5 \\ -1\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{c}1 \\ -4\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}3 \\ -5\end{array}\right]$ ，and consider the bases for $\boldsymbol{R}^{2}$ given by $\mathbf{B}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}\right]$ and $\mathbf{C}=\left[\mathbf{c}_{1}, \mathbf{c}_{2}\right]$ ．Find the change－of－coordinates matrix from $\mathbf{B}$ to $\mathbf{C}$ ．$(10 \%)$

7．（a）Diagonalize matrix $\mathbf{A}$ ，that is，find an invertible matrix $\mathbf{P}$ and a diagonal matrix $\mathbf{D}$ such that $\mathbf{A}=\mathbf{P D} \mathbf{P}^{-1}$ ． （ $15 \%$ ）

$$
\mathbf{A}=\left\{\left[\begin{array}{c}
1 \\
-3 \\
3
\end{array}\right],\left[\begin{array}{c}
3 \\
-5 \\
3
\end{array}\right],\left[\begin{array}{c}
3 \\
-3 \\
1
\end{array}\right]\right\}
$$

（b）Explain the purpose of matrix diagonalization．（5\％）

8．Find a least－squares solution of the inconsistent system $\mathbf{A x}=\mathrm{b}$ for（ $15 \%$ ）

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 3 & 5 \\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
3 \\
5 \\
7 \\
-3
\end{array}\right]
$$

