第1頁，共2頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．The Fourier series of a function $f(x)$ with period 2π is given by

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x, \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad n=1,2, \cdots \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x, \quad n=1,2, \cdots
\end{aligned}
$$

（a）Find the Fourier series of the function $f(x)(10 \%)$ ．
（b）Explain the meaning of the obtained coefficients a_{n} and b_{n} ．（5\％）

2．Give a nonhomogeneous equation and its corresponding homogeneous equation

$$
\begin{align*}
& y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{1}\\
& y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{align*}
$$

Prove that
（a）The difference of two solutions of Eq．（1）is a solution of Eq．（2）．（7\％）
（b）The sum of a solution of Eq．（1）and a solution of Eq．（2）is a solution of Eq．（1）．（8 \％）

3．（a）Solve the least－squares linear system $\mathbf{A x}=\mathbf{b}$ ．（15\％）．
（b）Explain the geometric meaning of least－squares solutions．（5\％）

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & 5 \\
3 & 1 \\
-2 & 4
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
4 \\
-2 \\
-3
\end{array}\right]
$$

4．（a）Find the singular value decomposition（SVD）of matrix A．（15\％）
（b）Introduce an application of SVD．（5\％）

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]
$$

第 2 頁，共 2 頁

5．An elastic membrane（具有彈性的薄膜）in the $x_{1} x_{2}$－plane with boundary circle $x_{1}^{2}+x_{2}^{2}=1$（see the figure）is stretched so that a point $P:\left(x_{1}, x_{2}\right)$ goes over into the point $Q:\left(y_{1}, y_{2}\right)$ given by

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\mathbf{A} \mathbf{x}=\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Find the principal directions of the deformed membrane．（15\％）

6．Given four vectors $v_{1}:\left[\begin{array}{llll}1 & 3 & 2 & 5\end{array}\right]^{T}, v_{2}:\left[\begin{array}{llll}1 & 5 & 4 & 0\end{array}\right]^{T}, v_{3}:\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]^{T}, v_{4}:\left[\begin{array}{llll}-1 & 5 & 2 & 8\end{array}\right]^{T} \in R^{4}$ ， then，（answer＇Yes＇or＇No＇）（ 15% ）
（a）The vector set is linearly independent．
（b）The vector set cannot form a basis for R^{4} ．
（c）The matrix $\mathbf{A}=\left[\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4}\end{array}\right]$ is invertible．
（d）The rank of the matrix \mathbf{A} is 3 ．
（e） $\mathbf{A x}=0$ has only the trivial solution，that is， $\mathbf{x}=0$
（f）The transformation matrix \mathbf{A} is a one－to－one transformation．
（g）The transformation matrix \mathbf{A} is a onto transformation

