編號: H 318 系所: 測量及空間資訊學系

科目:測量平差法

請注意:本試題禁止使用任何計算器

- 1. Why is it important to estimate the a posteriori standard deviation of unit weight in adjustment computations? (10%)
- 2. Please state the relationship between the position precision and the ratio of misclosure in traverse computations. (10%)
- 3. How do you evaluate the quality of a surveying network? (10%)
- 4. Assume that the random quantities X_1, X_2, \dots, X_n are measured two times. The observations are uncorrelated and listed as follows:

$$L_1^{(1)}, L_2^{(1)}, \cdots, L_n^{(1)}$$

 $L_1^{(2)}, L_2^{(2)}, \cdots, L_n^{(2)}$

with weights: P_1, P_2, \dots, P_3

The weights of each observation pair $(L_i^{(1)} \text{ and } L_i^{(2)})$ are supposed to be the same. Compute that

- (a) the standard deviation of unit weight, and (10%)
- (b) the standard deviation of the i-th mean. (10%)
- 5. The generalized Gauss-Markov model with full rank is given by

$$\ell + v = A x, \qquad \Sigma_{\ell\ell} = \sigma_0^2 P^{-1} \tag{1}$$

If the least squares principle is applied, prove that

(a)
$$\Sigma_{\hat{v}\hat{v}} = \sigma_0^2 Q_{\hat{v}\hat{v}} = P^{-1} - A(A^T P A)^{-1} A^T$$
 (10%)

$$(b) \hat{v} = -Q_{\hat{v}\hat{v}}P\ell \tag{5\%}$$

(背面仍有題目,請繼續作答)

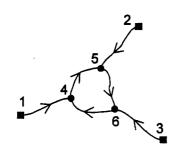
編號: 318 系所:測量及空間資訊學系

科目: 測量平差法

6. If the parameter x in the generalized Gauss-Markov model (1) is subject to the constraint $C x = c_0$, where C denotes a $d \times u$ matrix of known coefficients with rank $(C) = d \le u$ and c_0 is a known $d \times 1$ vector. If the least squares principle is applied, prove that the estimator \hat{x} of the vector x is given by (15%)

$$\hat{x} = (A^T P A)^{-1} [A^T P \ell + C^T (C(A^T P A)^{-1} C^T)^{-1} (c_0 - C(A^T P A)^{-1} A^T P \ell)]$$

7. Give you the observation equations without solving them by any adjustment principles for each network sketched in the following. Note that the known points denoted by the symbol \blacksquare or \blacktriangle are the weighted points. The symbol Δ means the difference, for example $\Delta H_{ij} = H_j - H_i$ and $\Delta X_{ij} = X_j - X_i$. (20%)



Given Heights: H₁, H₂, H₃

with weights: W_1 , W_2 , W_3

Observations: ΔH_{14} , ΔH_{25} , ΔH_{36}

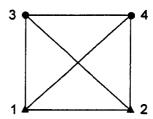
ΔH₄₅, ΔH₅₆, ΔH₆₄

with weights: P₁, P₂, P₃.

P₄, P₅, P₆

Found: H4, H5, H6

Leveling network



Given: X_1 , Y_1 , Z_1

X₂, Y₂, Z₂

with weights: W_{X1}, W_{Y1}, W_{Z1}

 $\mathsf{W}_{\mathsf{X2}}, \mathsf{W}_{\mathsf{Y2}}, \mathsf{W}_{\mathsf{Z2}}$

Observations: $\triangle X_{ii}, \triangle Y_{ii}, \triangle Z_{ii}$

i,j=1,2,3,4, 1 + j

with weights: P_{ij} , i,j=1,2,3,4, $\hat{i} \neq j$

Found: X_3 , Y_3 , Z_3 , X_4 , Y_4 , Z_4

GPS baseline network