系所組別：資源工程學系乙組
考試科目：材料科學導論

## 第1頁，共1頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．Please derive the critical radius and activation energy for homogeneous nucleation．（ $10 \%$ ）
2．Define and describe the differences between the reconstructive and displacive transformation．（10\％）
3．Identify and draw the positions of the FCC octahedral and tetrahedral interstices and calculate the numbers of constitutional atoms，tetrahedral and octahedral sites．（10\％）
4．Calculate the theoretical density of the $\mathrm{BaTiO}_{3}(10 \%)$ （crystal system：cubic， $\mathrm{a}=4.01 \AA$ ），Atomic weight： $\mathrm{Ba}=137.32 \mathrm{~g} / \mathrm{mol}, \mathrm{Ti}=47.86 \mathrm{~g} / \mathrm{mol}, \mathrm{O}=16 \mathrm{~g} / \mathrm{mol}$


5．Calculate the equilibrium number of vacancies per cubic meter for copper at $1000^{\circ} \mathrm{C}$ ．The energy for vacancy formation is $0.9 \mathrm{eV} /$ atom；the atomic weight and density $\left(\right.$ at $1000^{\circ} \mathrm{C}$ ）for copper are $63.5 \mathrm{~g} / \mathrm{mol}$ and $8.40 \mathrm{~g} / \mathrm{cm}^{3}$ ，respectively．（ $10 \%$ ）
6．If electroneutrality is to be preserved，what point defects are possible in NaCl when a Ca ${ }^{2+}$ substitutes for a $\mathrm{Na}^{+}$ion？How many of these defects exist for every $\mathrm{Ca}^{2+}$ ion？（ $10 \%$ ）
7．Using and plotting the electron band structures to explain the insulators，conductors，n－type semiconductors and p－type semiconductors．（ $10 \%$ ）
8．Packing density of a structure $=$ fraction of volume in a crystal structure that is occupied by constituent particles．Please derive the packing densities for BCC and FCC structures．（ $10 \%$ ）
9．（1）Calculate Miller Indices，given the following intercepts：$a^{\prime}=3, b^{\prime}=2, c^{\prime}=4$ ；（2）Sketch a cubic unit cell and in it indicate and label the following directions：［101］（10\％）
10．When a solid solution becomes unstable due to a lower temperature，for example exsolution occurs and the two phases separate into distinct microscopic to megascopic lamellae．Use the thermodynamics（Gibbs free energy）to explain why？（10\％）

