國立成功大學76 學年度協議的入浸考試(工程收學試題)共分頁

1. Consider an A-B binary single-phase alloy with n_A A atoms and n_B B atoms. According to statistical mechanics, the configurational entropy change (ΔS) relative to pure A and pure B can be expressed as

 $\Delta S = -k \left\{ n_A \ln \frac{n_A}{n} + n_B \ln \frac{n_B}{n} \right\},$ where k is Boltzmann constant, and $n = n_A + n_B$. Derive the above equation, including the approximation(s) if any, step by step. (10%)

2. Anneal a long steel rod of radius rs in a furnace. The temperature (T) on the surface of the rod (r=rs) is always maintained constant (T=Ts). In the center of the rod the temperature rises form To, with at being equal to zero all the time. The temperature variation of the rod as a function of time (t) is described by

 $\frac{\partial T}{\partial t} = \frac{\ell}{cP} \left(\frac{\partial^2 T}{\partial r^2} + \frac{\partial T}{\partial r} \right),$ $\ell \in \mathcal{C} \text{ and } P \text{ are thermal Corner}$

where h, c and p are thermal conductivity, specific heat and density of the rod, respectively. Solve the above differential equation. (Hint: find Bessel differential equation). (15%)

- 3. Evaluate the integral $\int_0^\infty (e^x-1)^{-1} x^3 dx$. (10%)
- 4. Stress-strain relation, in terms of linear elasticity, can be expressed as the matrix form given in the next page if the strained body is isotropic. Prove that 2 Ca4 = C11-C12. In other words, there exist only two independent elastic constants for isotropic materials.

Hint: try to rotate the coordinate system.

國立成功大學 76 學年度确构的冷考試(工程 數學 試題) 第2 頁

$$\begin{pmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33}
\end{pmatrix} = \begin{pmatrix}
c_{11} & c_{12} & c_{12} & 0 & 0 & 0 \\
c_{12} & c_{11} & c_{12} & 0 & 0 & 0 \\
c_{12} & c_{12} & c_{11} & 0 & 0 & 0 \\
\sigma_{31} & \sigma_{31} & \sigma_{31} & \sigma_{31}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{11} & c_{12} & c_{12} & \sigma_{31} & \sigma_{31} \\
\sigma_{31} & \sigma_{31} & \sigma_{31}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{12} & c_{12} & c_{12} & \sigma_{31} \\
\sigma_{31} & \sigma_{31} & \sigma_{31}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{12} & c_{12} & c_{12} & \sigma_{31} \\
\sigma_{31} & \sigma_{32} & \sigma_{31}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{12} & c_{12} & c_{12} & \sigma_{31} \\
\sigma_{31} & \sigma_{32} & \sigma_{31}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{12} & c_{12} & c_{12} & \sigma_{32} \\
\sigma_{31} & \sigma_{32} & \sigma_{32}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{11} & c_{12} & c_{12} & \sigma_{32} \\
\sigma_{31} & \sigma_{32} & \sigma_{32}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{11} & c_{12} & c_{12} & \sigma_{32} \\
\sigma_{31} & \sigma_{32} & \sigma_{32}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{11} & c_{12} & c_{12} & \sigma_{32} \\
\sigma_{31} & \sigma_{32} & \sigma_{32}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{11} & c_{12} & c_{12} & \sigma_{32} \\
\sigma_{31} & \sigma_{32} & \sigma_{32}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{11} & c_{12} & c_{12} & \sigma_{32} \\
\sigma_{31} & \sigma_{32} & \sigma_{32}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{12} & c_{12} & c_{12} & \sigma_{32} \\
\sigma_{31} & \sigma_{32} & \sigma_{32}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{12} & c_{12} & c_{12} & \sigma_{32} \\
\sigma_{31} & \sigma_{32} & \sigma_{32}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{12} & c_{12} & c_{12} & \sigma_{32} \\
\sigma_{31} & \sigma_{32} & \sigma_{32}
\end{pmatrix}$$

$$\begin{pmatrix}
c_{12} & c_{12} & c_{12} & \sigma_{32} \\
\sigma_{31} & \sigma_{32} & \sigma_{32}
\end{pmatrix}$$

where O_{ij} , C_{ij} and C_{ij} are stresses, elastic constants and strains, respectively. The strains are disignated with tensor notations. Namely, $C_{ij}(i \neq j) = \frac{1}{2} Y_{ij}(i \neq j)$, where Y_{ij} are conventional engineering strains. (15%)

國立成功大學 76 學年度初好的冷考試(普通物理 試題)共3 頁

- 1. An elevator and its load have a total mass of 900 kg. Find the tension T in the supporting cable when the elevator, originally moving downward at 15 m.s⁻¹, is brought to rest with constant acceleration in a distance of 30 m.
- 2. A steel bar 15 cm long is welded end-to-end to a copper bar 30 cm long. Each bar has a square cross section, 3 cm on a side. The free end of the steel bar is placed in contact with steam at 100° C, and the free end of the copper bar with ice at 0°C. Find the temperature at the junction of the two bars and the total rate of heat flow, when steady-state conditions have been reached. $k_s = 50.2 \text{ J.S}^{-1} \text{m}^{-1} . (^{\circ}\text{C})^{-1}$, $k_c = 385 \text{ J.S}^{-1}$, $\text{m}^{-1} (^{\circ}\text{C})^{-1}$
- 3. A particle having a charge $q=8 \times 10^{-9} C$ moves from point a to point b along a straight line, a total distance d=0.8m. The electric field is uniform along this line, in the direction from a to b, with magnitude $E=300N.C^{-1}$. Determine the force on q, the work done on it by the field, and the potential difference Va-Vb.
- 4. If the current in the coil with self-inductance $20\,\mu H$ increases uniformly from zero to 2 A in 0.5 S, find the magnitude and direction of the self-induced emf.
- 5. A certain 60-watt lightbulb emits a total luminous flux of 1000 lm, distributed uniformly over a hemisphere. Find the illuminance and the luminous in+