科目:熱力學

- (1) Definition of terms (5 points for each)
- (a) Phase rule
- (b) Regular solution
- (c) Raoult's law
- (d) Gibbs-Duhem equation
- (e) Clausius-Clapeyron equation
- (f) Fugacity
- (g) Trouton's rule
- (h) Joule-Thomson coefficient
- (i) Third-Law entropy
- (i) Reference state
- (2) Nernst equation: $E^0 = -\Delta G^0 / nF$. (F = 96485 C/mol). The standard potential of the Daniell cell is + 1.10 V, estimate the equilibrium constant for the cell reaction. (12 points)
- (3) Calculate the difference in molar Gibbs energy between the top and bottom of a column of mercury in a barometer of height 760 mm. The density of mercury is 13.6 g/cm³. (12 points)
- (4) Calculate the change in molar entropy when hydrogen gas is heated from 20 0 C to 30 0 C at constant volume. ($C_{vm} = 22.44 \text{ JK}^{-1} \text{mol}^{-1}$) (13 points)
- (5) Please determine the slope of reaction boundary for the P-T diagram below.

(13 points)

	S J K ⁻¹ mol ⁻¹	V 10 ⁻⁶ m ³ mol ⁻¹
jadeite (NaAlSi ₂ O ₆)	133.5	60.4
quartz (SîO ₂)	41.5	22.7
albite (NaAlSi ₃ O ₈)	207.4	100.1

 $R = 8.314 51 \text{ J K}^{-1} \text{ mol}^{-1}$ $8.314 51 \text{ kPa L K}^{-1} \text{ mol}^{-1}$ $8.205 78 \times 10^{-2} \text{ L atm K}^{-1} \text{ mol}^{-1}$ $62.364 \text{ L Torr K}^{-1} \text{ mol}^{-1}$ $1.987 22 \text{ cal K}^{-1} \text{ mol}^{-1}$