國立成功大學九十九學年度碩士班招生考試試題

系所組別 資源工程學系乙組

乔川和川 黄源上任学术石柏 考試科目 執力學

細計 97

共 / 頁 第/頁

※ 考生請注意 本試顥 [7] □不可 使用計算機

(1) Calculate the emf at 25° C of a concentration cell pt,H₂/HCl(m₁) // pt,H₂/HCl(m₂) in which the molalities are $0.2 \text{ m} \text{ (m_1)}$ and $3 \text{ m} \text{ (m_2)}$, (12%)

(2) Calculate
$$E^0$$
 for the process $Cu^+ + e \Rightarrow Cu$

Making use of the following E^0
 $Cu^{2+} + e \Rightarrow Cu$
 $E^0 = 0.153V$
 $Cu^{2+} + 2e \Rightarrow Cu$
 $E^0 = 0.153V$
 $E^0 = 0.153V$
 $E^0 = 0.153V$
 $E^0 = 0.153V$
 $E^0 = 0.153V$

- (3) Toluene (mw=92 g/mole) and water are immiscible. If boiled together under an atmospheric pressure of 755 Torr at 83 $^{\circ}$ C, what is the ratio of toulene to water in the distillate? The vapor pressure of pure toulene and water at 83 $^{\circ}$ C are 322 Torr and 400 Torr respectively (12%)
- (4) Detail the steps in going from the Clapeyron equation to the Clausius-Clapeyron equation. What specific assumptions are made? (12%)
- (5) The solubility of oxygen in water at 1 atm pressure and 298 K is 0.00115 (mole/Kg of water) Under these conditions, calculate the standard chemical potential for a saturated solution of oxygen in water. (12%)
- (6) Calculate the activities and activity coefficients for an acetone-choroform solution in which $x_2 = 0.6$. The vapor pressure of pure chloroform at 323K is $P^*_{2} = 98.6$ kPa and the vapor pressure above the solution is $P_2 = 53.3$ kPa. For acetone, the corresponding values are $S^*_{1} = 84.0$ kPa and $P_{1} = 26.6$ kPa. (15%)
- (7) The equilibrium const for an association reaction A+B=>AB is 1.8×10^3 dm 3 mol $^{-1}$ at $25\,^{\circ}\mathbb{C}$ and 3.45×10^3 dm 3 mol $^{-1}$ at $40\,^{\circ}\mathbb{C}$ Assuming ΔH^0 to be independent of temperature, calculate ΔH^0 and ΔS^0

(12 %)

(8) Liquid water at 100°C is in equilibrium with water vapor at 1 atm pressure. If the enthalpy change associated with the vaporization of liquid water at 100°C is 40.6 kJ mol¹¹, what are ∆G and ∆S 2 (106€).