A 卷：普通物理（20 題選擇题［1－20］，每題 1.5 分），量子物理導論（10 题選擇題［21－30］，每題3分），物理冶金（6 題非選萚題［31－36］，每題5 分）。満分90分。倒扣至零分為止。

一，選擇題（請以 $2 B$ 鉛筆割卡作答）

科目名稱：普通物理

每题為 4 迲 1 ，每一题答對得 1.5 分，答錯倒扣 0.375 分。

1．Two particles，X and Y ，are 4 m apart．X has a charge of $2 Q$ and Y has a charge of Q ．The force of X on Y ：（A）has twice the magnitude of the force of Y on X （B）has half the magnitude of the force of Y on X （C）has one－fourth the magnitude of the force of Y on X （D）has the same magnitude as the force of Y on X

2．Let k denote $1 / 4 \pi \varepsilon_{0}$ ．The magnitude of the electric field at a distance r from an isolated point particle with charge q is：（A） kq / r（B） kr / q（C） $\mathrm{kq} / \mathrm{r}^{2}$（D） $\mathrm{kq}^{2} / \mathrm{r}^{2}$

3．A charged particle is placed in an electric field that varies with location．No force is exerted on this charge：（A）at locations where the electric field is zero（B）at locations where the electric field strength is $1 /\left(1.6 \times 10^{-19}\right) \mathrm{N} / \mathrm{C}$（C）if the particle is moving along a field line（D）if the field is caused by an equal amount of positive and negative charge

4 Charge Q is distributed uniformly throughout an insulating sphere of radius R ．The magnitude of the electric field at a point $\mathrm{R} / 2$ from the center is：（A） $\mathrm{Q} / 4 \pi \varepsilon_{0} \mathrm{R}^{2}$（B） $\mathrm{Q} / 8 \pi \varepsilon_{0} \mathrm{R}^{2}$ （C） $3 \mathrm{Q} / 4 \pi \varepsilon_{0} \mathrm{R}^{2}$（D） $\mathrm{Q} / \pi \varepsilon_{0} \mathrm{R}^{2}$

5．An electron volt is：（A）the force acting on an electron in a field of $1 N / C$（B）the force required to move an electron 1 meter（C）the energy gained by an electron in moving through a potential difference of 1 volt（D）the work done when 1 coulomb of charge is moved through a potential difference of 1 volt．

6．A charged capacitor stores 10 C at 40 V ．Its stored energy is：（A） 400 J （B） 4 J （C） 200 J （D） 2.5 J

7．Which one of the following quantities is correctly matched to its unit？（A）Power $-\mathrm{kW} \cdot \mathrm{h}$ （B）Energy－kW（C）Potential difference－J／C（D）Current－A／s

※ 考生請注意：本試題（丁可 \square 不可 使用計算機

8．A $3-\Omega$ and a $1.5-\Omega$ resistor are wired in parallel and the combination is wired in series to a $4-\Omega$ resistor and a $10-\mathrm{V}$ emf device．The potential difference across the $3-\Omega$ resistor is：（A） 1.0 V （B） 2.0 V （C） 8.0 V （D） 10 V

9．When the outdoor emergency warning siren at school was tested，the sound from the siren took 7.9 s to reach her house located 2.40 km from the school．What is the speed of sound in the air？ （A） $240 \mathrm{~m} / \mathrm{s}$（B） $340 \mathrm{~m} / \mathrm{s}$（C） $440 \mathrm{~m} / \mathrm{s}$（D） $540 \mathrm{~m} / \mathrm{s}$

10．A landing airplane makes contact with the runway with a speed of $78.0 \mathrm{~m} / \mathrm{s}$ and moves toward the south．After 18.5 seconds，the airplane comes to rest．What is the average acceleration of the airplane during the landing？（A） $14.3 \mathrm{~m} / \mathrm{s}^{2}$ ，north（B） $14.3 \mathrm{~m} / \mathrm{s}^{2}$ ，south（C） $4.22 \mathrm{~m} / \mathrm{s}^{2}$ ，north（D） $4.22 \mathrm{~m} / \mathrm{s}^{2}$ ，south

11．In which of the following cases is the displacement of the object directly proportional to the elapsed time？（A）A ball tolls with constant velocity（B）A ball rolling with velocity v is given a constant acceleration（C）A bead falling through oil experience a decreasing acceleration（D）A rocket fired from the earth＇s surface experience an increasing acceleration

12．A ball is thrown vertically upward from the surface of the earth．Consider the following quantities：（1）the speed of the ball；（2）the velocity of the all；（3）the acceleration of the ball． Which of these is（are）zero when the ball has reached the maximum height？（A） 1 only（B） 2 only（C） 1 and 2 （D） 1,2 ，and 3

13．Starting from rest，a particle that is confined to move along a straight line is accelerated at a rate of $5.9 \mathrm{~m} / \mathrm{s}^{2}$ ．Which statement concerning the slope of the position versus time graph for this particle is true？（A）The slope has a constant value of $5.0 \mathrm{~m} / \mathrm{s}$ ．（B）The slope is both constant and negative．（C）The slope is not constant and increases with increasing time．（D）The slope is not constant and decreases with increasing time．

14．A train travels due south at $60 \mathrm{~m} / \mathrm{s}$ ．It reverses its direction and travels due north at $60 \mathrm{~m} / \mathrm{s}$ ． What is the change in velocity of the train？（A） $120 \mathrm{~m} / \mathrm{s}$ ，due north（B） $120 \mathrm{~m} / \mathrm{s}$ ，due south（C） $60 \mathrm{~m} / \mathrm{s}$ ，due north（D） $60 \mathrm{~m} / \mathrm{s}$ ，due south

15．Two slits are 0.158 mm apart．A mixture of red light（wavelength $=665 \mathrm{~nm}$ ）and yellow－green light（wavelength $=565 \mathrm{~nm}$ ）falls on the slits．A flat observation screen is located 2.24 m away．What is the distance on the screen between the third－order red fringe and the third－order yellow－green fringe？（A） 0.42 （B） 0.43 （C） 0.44 （D） 0.45 cm

系所組別：材料科學及工程學系

考試科目：A科目

16．The pupil of an eagle＇s eye has a diameter of 6.0 mm ．The refractive index in the eye is 1．36．Two field mice are separated by 0.010 m ．From a distance of 175 m ，the eagle sees them as one unresolved object and dives towari them at a speed of $17 \mathrm{~m} / \mathrm{s}$ ．Assume that the eagle＇s eye detects light that has a wavelength of 550 nm in a vacuum．How much time passes until the eagle sees the mice as separate objects？（A） 3.0 （B） 3.1 （C） 3.2 （D） 3.3 sec

17．A diffraction grating produces a first－order bright fringe that $1: 0.0894 \mathrm{~m}$ away from the central bright fringe on a flat screen．The separation between the slits of the grating is 4.17 $\times 10^{-6} \mathrm{~m}$ ，and the distance between the grating and the screen is 0.625 m ．What is the wavelength of the light shining on the grating？（A） 5.90×10^{-7}（B） 5.90×10^{-6}（C） $6.90 \times$ 10^{-7}（D） $6.90 \times 10^{-6} \mathrm{~m}$

18．A single slit has a width of $2.1 \times 10^{-6} \mathrm{~m}$ and is used to form a diffraction pattern．Find the angle that locates the second lark fringe when the wavelength of the light is 660 nm ．（A） 38 （B） 39 （C） 40 （D） 41 degrees

19．The same diffraction grating is used with two different wavelengths of light，λ_{A} and λ_{B} ． The fourth－order principal maximum of light A exactly overlaps the third－order principal maximum of light B ．Find the ratio $\lambda_{A} / \lambda_{B}$ ．（A） $3 / 4$（B） $1 / 2$（C） $3 / 8$（D） $1 / 4$

20．A charge of $12 \mu \mathrm{C}$ ，traveling with a speed of $9.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in a direction perpendicular to a magnetic field，experiences a magnetic force of $8.7 \times 10^{-3} \mathrm{~N}$ ．What is the magnitude of the field？（A） 7.8×10^{-5}（B） 7.9×10^{-5}（C） 8.0×10^{-5}（D） $8.1 \times 10^{-5} \mathrm{~T}$

科目名稱：量子物理萑論

每题為 4 選 1 ，每一题答對得 3 分，答错倒扣 2 分。

Planck＇s constant $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \quad$ Mass of an electron $=9.110 \times 10^{-31} \mathrm{Kg}$
Speed of light $=2.998 \times 10^{8} \mathrm{~m} / \mathrm{sec} \quad$ Charge of an electron $=1.602 \times 10^{-19} \mathrm{C}$

21．Spacecraft A is moving at 0.8 c with respect to the earth．If spacecraft B is to pass A at a relative speed of 0.6 c in the same direction，what speed must B have with respect to the earth？（A） 0.98 c （B） 0.89 c （C） 0.92 c （D） 0.95 c

22．A 80 MeV photon is elastically scattered by a proton that is at rest．What is the maximum possible energy loss for the photon？（The Compton wavelength of electron is $2.4^{*} 10^{-12} \mathrm{~m}$ ）
（A） 68.5 MeV
（B） 72.8 MeV
（C） 54.5 MeV
（D） 58.8 MeV

編號：	101		\％頁•第4頁
系所組別：村料科學及工程䑁系			
考試科	：A科目		日斯

※ 考生請注意：本試題－可 \square 不可 使用計算機

23．How many spectra lines appear in the Zeeman splittong of the the ${ }^{2} \mathrm{D}_{3 / 2} \rightarrow{ }^{2} \mathrm{P}_{1 / 2}$ ？（A） 4 （B） 5 （C） 6 （D） 7

24． $\mathrm{A}^{200} \mathrm{Hg}^{35} \mathrm{Cl}$ molecule emits a $4.4-\mathrm{cm}$ photon when it undergoes a rotational transition from $J=?$ to $J=0$ ．Find the interatomic distance in the molecuie．（A） 0.22 nm （B） 0.33 nm （C） 0.44 nm （D） 0.55 nm

25．If a wavelength of 0.083 nm is needed for the electron diffraction experiment of a material， wha is the potential difference required for the electrons to accelerate through in order to get the necessary kinetic energy？（A） 0.216 kV （B） 2.16 kV （C） 21.6 kV （D） 216 kV

26 If an electron of hydrogen atom is in the $4 f$ state．what are the principle quantum number n and orbital quantum number l of this state？（4）$n=5 l=4$（B）$n=4 l=3$（C）$n=3 l=3$（D）$n=3$ $l=2$

27．If an electron of hydrogen atom is in the $\overline{3} d$ state，what is it angular momentum？ $\sqrt{3} \hbar$（B）$\sqrt{4} \hbar$（C）$\sqrt{5} \hbar$ © $\sqrt{6} \hbar$

28．Which one of the following is correct？（A）Classical mechanics is an approximation of quantum mechanics．（B）Classical mechanics is complimentary to auantum mechanics．（C） Quantum mechanics proves that classical mechanics is wrong．（D）Quantum mechanics cannot explain those that can be explained classical mechanics．

29．In many molecules，the bond is most likely to be（A）purely covalent（B）ones in which the atoms share electrons to an unequal extent（C）purely ionic（D）ones in which the atoms share electrons to an equal extent．

30．Identical particles of 0 or 1 integral spin that cannot be distinguished one from another are described the（A）Bose－Einstein（B）Fermi－Dirac（C）Maxwell－Boltzmann（D）any of the above distribution．

※ 考生請注意：本試題 ■可 \square 不可 使用計算機

二，非選擇題（請以原子筆在非選擇題答案紙上標明题號作答）

科目名稱：物理冶金（每题5分）

31．Please draw the $[0,0]$ diffraction pattern of a FCC crystal．
32．Please discuss the difference between static recovery and dynamic recovery．
33．Sketch the unit cell of BaTiO_{3} ．Answer the following questions．
（a）What is the crystal system and the Bravais lattice？
（b）How many atoms are there per unit cell？
（c）Give the type and number of nearest neighbors for each atom and show that the structure obey Pauling＇s electrostatic valence rule．

34．Derive and discuss the relationships between the potential well and the elastic modulus of the crystalline materials．

3．Please explain the phenomenon of＂dendritic growth＂in pure metals．Draw the 2D schematic of liquid－solid interface for an FCC crystal having primary and secondary dendrite arms．

36．Aluminum－Lithium alloy，like certain precipitation－iardened aluminum alloys，has low ductility．Please explain one of its failure mechanisms that is due to the formation of precipitation－free zones in the grains．

