編號: 98

國立成功大學 105 學年度碩士班招生考試試顯

所:材料科學及工程學系 系

考試科目:材料熱力學

考試日期:0227, 節次:2

第1頁,共4頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 材料熱力學共20題選擇題,每題答對得5分,答錯倒扣1分;滿分100分,倒扣至0分為止。

- 1. For a gas following the van der Waals equation of state (as given below), the value of ΔH_{evap} (molar heat of evaporation) as the temperature approaches T_{cr} will be, $\left(P + \frac{a}{V^2}\right)(V - b) = RT$
 - (a) 0
- $\{b\} > 0$
- (c) < 0
- (d) varying according to the quantity (e) unpredictable

- 2. Which of the following expression is correct?
 - (a) $d\vec{G} = \vec{V}_1 dP$
- (b) $d\overline{G}_1 = \overline{V}_1 dP$ (c) $d\overline{G}_1 = \overline{V} dP$ (d) $\overline{G}_1 = \overline{V}_1 dP$ (e) $dG = \overline{V}_1 dP$

- 3. The following is the binary phase diagram of Cu and Ag. Which statement is correct?

- (a) B has three phases co-existing
- (b) C is the boiling point of Cu
- (c) α phase is 100% Ag

- (d) D is eutectic point
- (e) Cu and Ag are completely miscible.
- 4. Continue from Question 3, what is (are) the phase(s) of 70Cu-30Ag at 1450°F, 1 atm?
 - $(a)\alpha$, β
- (b) liquid
- (c) liquid, vapor
- (d) liquid, B
- (e) solid.

編號: 98

國立成功大學 105 學年度碩士班招生考試試題

所:材料科學及工程學系

考試科目:材料熱力學

考試日期:0227,節次:2

	2頁,共4頁	_						
5.	A Carnot heat e	ngine operates b	etween reserv	oirs at 1200°C	and 200°C. The isoth	ermal process at the		
	hotter reservoir	consists of an ex	cpansion (reve	rsible) from an	initial pressure of 5 x	105 N/m ² to 4 x 104		
	N/m ² . Assuming	g that the workin	g substance is	a kilomole of i	deal gas. What is the	efficiency of the heat		
	engine?							
	(a) 98%	(b) 88%	(c) 78%	(d) 68%	(e) 58%			
_		T d \	/laiah afaha	following is th	o critorion of equilibr	ium?		
6.				aximum entro	e criterion of equilibr	m internal energy,		
		elmholtz free en			gy is equal to zero.			
	(d) enthalpy is e	equal to zero,	(6)	JIDD2 HEE CHEL	gy 13 equal to zero.			
7	The infinitesima	al variation of int	ernal energy w	ith entropy at	constant volume def	ines		
′	(a) enthalpy,				(d) heat capacity,			
	(a) Critilary)	(2) (2)	(-,		• •			
8.	. Which of the fo	Which of the following is not a state function?						
	(a) PV work	(b) entropy	(c) angular	moment	(d) internal energy	(e) temperature		
9	. The EMF of the	cell $Ag_{(s)} \mid AgC$	$Cl_{(s)} \mid Cl_{2(g,1tam)}$	Pt is found to	o be			
		•			n the temperature ra	nge t = 100°C to t =		
	450°C. The valu	ue of ∆Cp for the	cell reaction is	s J K-1	lmole-1.			
	(a) 0.145	(b) -2.361	(c) 63.25	(d) 1.5 (52 (e) -0.093			
	-							
		· · · · · · · · · · · · · · · · · · ·	- Man dan Maa	is and to 0 5 lit	or by the three differ	ent reversible proces		

- 10. When compressing a liter of an Van der Waals gas to 0.5 liter by the three different reversible processes
 - (1) isothermally, (2) adiabatically, and (3) isobarically, the work needed would be
 - (a) W1>W2>W3,
- (b) W2>W1>W3,
- (c) W3>W1>W2,
- (d) W1>W3>W2,
- (e) W2>W3>W1.
- 11. Assuming A and B forms Henrian solution behavior with very strong negative deviation, which one of the following statement is correct:
 - (a) there is strong attractive force between A and B
 - (b) there is strong repulsion force between A and B
 - (c) the partial pressure of each component is much higher than the Raoultian solution
 - (d) there is attraction force between A and B is same as A-A and B-B
 - (e) none of above is correct.

编號	•	ΔQ	

國立成功大學 105 學年度碩士班招生考試試題

所:材料科學及工程學系 糸

考試科目:材料熱力學

考試日期:0227, 節次:2

第3頁,共4頁

12. From, Co(s) + (1/2) O2(g) = CoO(s), $DG^{\circ} = -233,900 + 71.85 \text{ T J } (298\text{K}-2000\text{K})$, when the mixture of Co and CoO equilibrates at 800°C, what would you do if you need to obtain more CoO,

- (a) lower the temperature to below 800°C (b) increase the temperature to above 800°C
- (c) added NiO into the mixture enthalpy (d) remove some oxygen (e) decrease the oxygen pressure
- 13. When you plot a P-T phase diagram for a unique substance, the slope for liquid solid boundary on its P-T diagram is negative, it indicates
 - (a) the density of solid is higher than liquid
- (b) there is volume increase when it melts

(c) the solid will sink in liquid

- (d) it needs heat to solidify
- (e) there is volume expansion when it solidifies.
- 14. Which of the following relations is incorrect?

(a)
$$C_p = T\left(\frac{\partial S}{\partial T}\right)_P$$
 (b) $C_p = \left(\frac{\partial H}{\partial T}\right)_P$ (c) $C_V = T\left(\frac{\partial S}{\partial T}\right)_V$ (d) $C_V = \left(\frac{\partial H}{\partial T}\right)_V$ (e) $C_V = \left(\frac{\partial U}{\partial T}\right)_V$

15. For most of non-metallic solids, the specific heat C_v at extremely low temperature (i.e. $T \rightarrow 0$ K) is proportional to:

- (a) T
- (b) T^2
- (c) T^3 (d) T^4
- (e) T⁵

16. A 1-dimensional classic harmonic oscillator at temperature T has an average energy equal to:

- (a) kT/2
- (b) kT
- (c) 3kT/2
- (d) 2kT
- (e) 5kT/2
- 17. Which of the following statement is correct for constant-volume heat capacity (C_v)?
 - (a) C_v of one mole gas equals 3R/2
 - (b) the internal energy of a material is proportional to its C_v
 - (c) the enthalpy of a material is proportional to its C_v
 - (d) C_v is proportional to the change of entropy to temperature
 - (e) C_v is a constant value for all elemental solids (e. g. Cu, Au, Al, Fe ...)
- 18. A binary A-B solution behaves ideally both in liquid and solid and exhibits complete mutual solid/liquid solubility. At a temperature which is between melting point of A and melting point of B, the activities of component B will be
 - (a) $a_B = X_A$
- (b) $a_B = X_B$

- (c) $a_B = X_B/X_A$ (d) a_B =constant (e) a_B may have two values for each of X_B .
- 19. An ideal gas at 300 K has a volume of 15 liters at a pressure of 15 atm. When the gas undergoes a reversible isothermal expansion to a pressure of 10 atm, the change in internal energy of the system is
 - (a) 0
- (b) 980 J
- (c) 9244 J
- (d) 273 J
- (e) 1033 J

編號: 98

國立成功大學 105 學年度碩士班招生考試試題

系 所:材料科學及工程學系

考試科目:材料熱力學

考試日期:0227,節次:2

4頁,共4頁				
0. What is a thermodynai	mic parameter?	() - timetian anarms	(d) dislocation	(e) heat capacity
(a) heat conductivity	(b) diffusivity	(c) activation energy	(d) dislocation	(c) near supusity
				-
		•		
	·			
		•		
				•
•				