國立成功大學 110學年度碩士班招生考試試題 編 號: 92 系 所: 材料科學及工程學系 科 目: 材料科學 日 期: 0202 節 次:第3節 備 註:可使用計算機 系 所:材料科學及工程學系 考試科目:材料科學 考試日期:0202,節次:3 第1頁,共7頁 | ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 | |--| | 材料科學共50題選擇題,每題答對得2分,答錯倒扣0.5分;滿分100分,倒扣至0分為止。 | | Which of the following effects can demonstrate that the substitutional diffusion of alloys results from vacancy mechanism? | | (a) Darken effect (b) Matano effect (c) Snoek effect (d) Kirkendall effect. | | Corrosion is a chemical reaction that involves (a) the bulk of the object changing from an element to a compound (b) the surface of the object changing from an element to a compound (c) the environment of the object changing from one compound to another compound (d) the bulk of the object changing from one element to another element (e) the surface of the object changes from one element to another element. | | 3. Rapidly freeze the materials favors the formation of a solid. | | (a) crystalline (b) dense (c) noncrystalline (d) ductile. | | | | 4. Which of the following statement about "vacancy in a crystal" is correct. | | (a) the existence of vacancy in the crystal lattice will increase the internal energy of the crystal. | | (b) the equilibrium vacancy concentration (Vc) can be expressed as Vc = exp (- \triangle H/Kt), where \triangle H = formation energy of vacancy, K = Boltzmann constant, and t = time. | | (c) the slow cooling process from liquid to solid will trap a lot of vacancy in the solidified crystal. | | (d) the plastic deformation of metals (e.g. hot rolling) will create significantly excess concentration of vacancy than that of equilibrium vacancy concentration. | | (e) the primary terms considered in the derivation of equilibrium vacancy concentration are entropy of | | mixing and enthalpy for the formation of vacancy. | | 5. What is the secondary recrystallization? | | (a) abnormal grain growth (b) increase the number of grains | | (c) increase the total grain-boundary energy (d) stress release. | | 6. As the molecular weight increase, the tendency of a polymer to crystallize | | (a) decrease (b) increase (c) remain the same (d) disappear. | | 7. Calculate the resolved shear stress on the (1 1 1) [0 -1 1] slip system for copper single crystal, if a stress of | | 20 MPa is applied in the [0 0 1] direction. | | (a) 3.4MPa (b) 5.4MPa (c) 7.4MPa (d) 9.4MPa (e) 11.4MPa. | | × | 系 所:材料科學及工程學系 考試科目:材料科學 考試日期:0202,節次:3 | 考試科目:材料科 | 學 | | | 考試日期:0202,節次: | |-------------------------------|----------------------------------|----------------------|--------------------------|---------------------------------| | 第2頁,共7頁 | | | | | | 8. Which of the fol | llowing statement a | about "dynamic re | covery" is correct: | | | (a) dynamic reco | overy will increase | the dislocation de | nsity and strength. | | | (b) dynamic reco | overy typically occu | irs at lower tempe | rature compared with | that of static recovery. | | (c) dynamic reco | overy is much easie | r to occur for BCC | crystals compared wit | h that of FCC crystals. | | (d) dynamic reco | overy typically occu | irs in the aging pro | ocess. | | | (e) the primary | mechanism involve | d in dynamic reco | very is dislocation cros | s-slip. | | 9. The impact stre | ngth of a polymer i | s measured as | | | | (a) elasticity | (b) yield stren | gth (c) cre | ep (d) permea | bility (e) toughness | | | | | | l: 80.7, 84.4, 87.2, 86.2 and | | 88.3. Determin | ne the standard dev | viation values of h | ardness. | | | (a) 2.65 | (b) 2.97 | (c) 5.93 | (d) 5.34 | (e) 2.42 | | 11. Carbon is allow | ved to diffuse throu | igh a steel plate 10 | 0 mm thick. The concer | ntrations of carbon at the two | | faces are 0.85 | and 0.40 kg C/cm ³ | which are kept co | nstant. If the preexpon | ential and activation energy | | are 6.2 x 10 ⁻⁷ n | n ² /s and 80,000 J/n | nol, respectively, o | ompute the temperati | are at which the diffusion flux | | is 6.3 x 10 ⁻¹⁰ kg | g/m^2 -s. | | | | | (a) 300K | (b) 600K | (c) 900K | (d) 1200K | | | 12. Which is the hi | ighest strain energy | precipitate? | | | | (a) Disk | (b) Sphere | (c) Needle | (d) Plate. | | | 13. For eutectic so | lidification, the rat | e of grows depend | I on: | | | (a) heat flow | (b) the critical | | (c) lamellar spacing | (d) melting temperature. | | 14 The number of | f vacancies in solids | | | | | | nearly with temper | | | | | , , | | | | | | • • | xponentially with to | | | | | | ent to the tempera | | | | | | inearly with tempe | | | | | (e) decreases e | exponentially with t | emperature. | | | | 15. Which of the fo | ollowing statement | is support about | the strain hardening ef | fect | | (a) oversaturat | ed solid solution | (h) precipitation | ons (c) deformation | on (d) diffusion | 系 所:材料科學及工程學系 考試科目:材料科學 考試日期:0202,節次:3 | 44 | 2 | 百 | | # | 7 | 雷 | |----|---|---|---|---|---|---| | 事 | 3 | Ħ | , | 夹 | 1 | | | 16. | . What is the or | der of surf | ace energy (| γ) of differe | nt surfaces in | iron crystal? | | | |-----|----------------------|------------------|---------------------------|----------------------------|---------------------------|------------------------|------------------------|------| | | (a) γ (111) > | γ (110) > | γ (100) | (b | γ (110) > γ | $(111) > \gamma (100)$ | | | | | (c) γ (100) > | γ (111) > | γ (110) | (d | γ (110) > γ | $(100) > \gamma (111)$ | | | | | | | | | | | | y | | 17. | For the crystal | structure | of sodium cl | nloride, what | is the coordin | nation number f | or cations (X) and an | ions | | | (Y). (Represent | ted in the | form of (X ,\ | ()) | | | | | | | (a) (4,4) | (b) (| 6,6) | (c) (8,8) | (c | 1) (8,4) | | | | | | | | | | | | | | 18. | . Two edge dislo | cations w | hich are side | by side at th | e same slip pl | ane with oppos | ite Burgers factor wil | I | | | (a) Attract eac | h other | (b) Release | e stress in gra | in (c) Dis | appear finally | (d) All of above. | | | | | | | | | | | | | 19. | . Which of the f | ollowing s | tatement is s | upport abou | the eutectoi | d composition? | | | | | (a) Aluminum | alloy | (b) low car | bon steel | (c) high o | carbon steel | (d) stainless steel | | | | | | | | | | | | | 20. | Estimate the y | ield stress | (in MPa) of | the material i | ısing Vickers l | hardness test u | nder 500g with the le | ngth | | | of diagonal 25 | | | | | | | | | | (a) 48.5 | (b) 14 | .8 (| c) 4.9 | (d) 145.4 | (e) (| 55.3. | | | | | | | | | | | | | 21. | Which of follow | wing state | ment is corre | ect? | | | | | | | (a) Diamond h | as a high t | hermal cond | uctivity beca | use it belongs | to carbon mate | erials | | | | (b) Diamond h | as a low el | ectrical cond | ductivity due | to the strong | interatomic ion | ic bonds | | | | (c) Diamond ha | as a low el | ectrical cond | luctivity due | to the strong i | interatomic cov | alent bonds | | | | (d) Diamond h | as a low th | ermal condu | activity due to | the weak va | n der Waals bo | nd | | | | | | | | | | | | | 22. | Calculate the f | racture to | ughness K _{IC} (| MPa.m ^{-1/2}) fo | r a 0.45C-Ni-0 | Cr-Ti steel havin | g a flaw size of 4.8 m | m | | | and a yield stre | | | | | | | | | | (a) 26 | (b) 36 | | (c) 46 | (d) 56 | (6 | e) 66. | | | | | | | | | • | • | | | 23. | Which of the fo | ollowing st | atement is r | not support a | out the dom | inant factor of i | ncreasing hardness a | nd | | | | | | | | aining to artific | | | | | (a) diffusional | | | (b) GP | | | , | | | | (c) strain induc | | | | cipitation har | dening | | | | | , | | | | | C | | | | 24. | A twin bounda | ry is | | | | | | | | | (a) a special typ | | boundary | (b) a s | oecific mirror | lattice symmet | ry | | | | (c) resulted fro | | | | interfacial de | | (e) all of them. | | | | | | , | , , | | | | | | | | | | | | | | | 系 所:材料科學及工程學系 考試科目:材料科學 考試日期:0202,節次:3 第4頁,共7頁 | 25 | . What is the c/a ratio | of the HCP crystal s | structure < 1.63? | | | |-----|--|--|--|----------------------------|---| | | (a)Cobalt | (b)zirconium | (c)magnesium | (d)zinc | (e)cadmium. | | 26 | . Why does not consider materials: | der the grain bound | ary diffusion under hig | h temperature | e condition for metal | | | (a) coarse grains | (b) segregation | (c) recrystallization | (d) high tem | perature brittleness. | | | | | | | | | 27 | | | | | SINGLE layer of carbon | | | atoms with sp ² hybr | idization, forming a | 2D honeycomb lattice | plane? | | | | (a) graphite (b) | graphene (c) fo | ullerene (d) carbo | n nanotube | (e) diamond. | | | 740 - 1 - 641 - 6-11 | | - 65 - 11 - 1 - 1 - 1 - 1 | | | | 28 | | | e effective to stop dislo | | | | | (a) Low-angle bound | | gh-angle boundaries | (c) Cohe | erent boundaries | | | (d) semi-coherent bo | oundaries (e) Tv | vin boundaries | | | | 20 | \A/b = + != +b = == == == == | | | , | | | 29 | . What is the measure | | | (-) | | | | (a) fracture stress | | imate tensile stress | (c) max | imum stress | | | (d) principal stress | (e) yie | eld strength. | | | | 30 | Which one is not fou | and after cooling in h | hypereutectoid plain-c | arhon steels? | | | 50 | (a) austenite | (b) pearlite | (c) cementite | (d) ferrite | (e) bainite. | | | (a) aastama | (b) podime | (o) comentic | (u) reinic | (c) builte. | | 31 | . Which of the followi | ng statement is sup | port about shortening | the holding tir | me of heat- treatment under | | | an identical holding | | | | | | | (a) deformation | (b) quenchir | ng (c) re | efining | (d) inoculation. | | | | | | | | | 32 | . For a binary solid sol | ution with two diffe | erent inter-diffusing co | efficients, whi | ch of the following | | | equations is used to | describe the net flu | x of vacancy into the d | iffusion bondi | ng interface? | | | (a) Darken's equation | n (b) Arrhenius' e | equation (c) Avram | ni equation | (d) Fick's 1st law equation. | | | | | | | | | 33. | . Fick's second law is o | derived from | | | | | | (a) interstitial diffusion | on mechanism | (b) conservation | on of matter | | | | (c) thermodynamic f | irst law | (d) thermodyr | namic second I | aw. | | | | | | | | | 34. | | | | | he total dislocation length | | | | | | | ocation density in the foil. | | | (a) 2 x 10 ¹⁴ m ⁻² | (b) 1 x 10 ¹⁴ m ⁻² | (c) 4 x 10 ¹⁴ m ⁻² | (d) 1 x 10 ¹⁰ m | ² (e) 2 x 10 ¹⁰ m ⁻² | | | | | | | * | 編號: 92 ## 國立成功大學 110 學年度碩士班招生考試試題 系 所:材料科學及工程學系 考試科目:材料科學 考試日期:0202,節次:3 第5頁,共7頁 | 35. | Which one of the fo | llowing is CO | RRECT latt | ice parameter | relations | hip of a CUB | IC structure | ? | |-----|---|-------------------------|-------------|-----------------------------------|--------------------------|----------------|------------------------------|--------------------------------------| | | (a) $a = b = c$, $\alpha = \beta =$ | $= \gamma = 90^{\circ}$ | (b) $a = 1$ | $c = c, \alpha = \beta = \gamma$ | ≠90° | (c) a≠b | \neq c, $\alpha = \beta =$ | $\gamma = 90^{\circ}$ | | | (d) $a = b \neq c$, $\alpha = \beta =$ | $= \gamma = 90^{\circ}$ | (e) $a = b$ | $\phi \neq c, \alpha = \beta = 9$ | $0^{\circ}, \gamma = 12$ | 0°. | | | | 36. | . The diffusion coeffic | cient for copp | er in alum | inum at 500 a | nd 600℃ | are 4.8 x 10 | ⁻¹⁴ and 5.3 x | 10 ⁻¹³ m ² /s, | | | respectively. Determ | | | | | | | | | | terms of concentrat | | | | | | | | | | (a) 50.1h | (b) 23.7h | | (c) 13.5h | | (d) 110.4 | | | | 37 | . Which one of the fo | llowing has t | ne highest | degree of crys | stallinity? | | | | | | (a) Metallic Glass | | | c) Amorphous (| | | /l chloride) | (e) Water. | | 38 | . Which one shows a | distinguished | temperat | ture transition | from brit | tle to ductile | e? | | | | (a) Low carbon stee | ls (| b) alumini | um alloys | (| c) copper all | oys | | | | (d) high strength ste | eels | (e) austen | itic stainless st | eels. | | | | | 39 | . The diffusion coeffic | cient is lower | at low ten | nperature, whi | ich of the | following m | ethod is use | ed to measur | | | the diffusion of carb | on in steel at | room ten | nperature? | | | | | | | (a) Torsion pendulu | m | (b) trace e | lement | | (c) diffusion | couple | | | | (d) Matano method | | (e) Darker | n's method | | | | | | 40 | . What type of protec | ction is galvar | izing? | | | | | | | | (a) physical protecti | on . | (b) therm | al protection | | (c) chemic | al protectio | n | | | (d) sacrificial protec | tion | (e) physic | al and sacrifici | al protec | tion | | | | 41 | . Which of the follow | ing statemen | t about "c | reep" is correc | t. | | | | | | (a) Creep deformati | on of metal o | ccurs at te | emperature lov | wer than | 30% of its m | elting temp | erature. | | | (b) Creep deformati
boundary sliding | | related to | o the dislocation | on motion | n, vacancy di | ffusion, and | grain | | | (c) Creep rate is ind | | he stress | applied. | | | 8 | | | | (d) The characterize | | | | o the rate | in this initia | al stage. | | | | (e) The most commo | | | | | | | | | 42 | . Which one of follow | ing substance | es is NOT l | bounded by co | valent bo | nding? | | | | | (a) CH ₄ | (b) H ₂ | (c |) Si | (d) H ₂ | 0 | (e) NaCl. | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | 系 所:材料科學及工程學系 考試科目:材料科學 考試日期:0202,節次:3 第6頁,共7頁 | 43. | The activation energy | is an important pa | ramete | r related to di | ffusion coefficie | nts. Which of the following | | | | |-----|--|-------------------------|-----------|-------------------|-------------------------|--|--|--|--| | | four conditions has the largest activation energy? | | | | | | | | | | | (a) Mn atom on the ferrite grain boundary (b) Carbon atom in the ferrite grain | | | | | | | | | | | (c) Mn atom in the sur | face of MnS inclus | sion | (d) Mn atom | in the ferrite gra | in. | | | | | | | | | | | | | | | | 44. | For the BCC crystal str | ucture, the Miller | indices | (h, k, and I) of | planes must be | if diffraction is to | | | | | | occur. | | | | | | | | | | | (a) h, k, l are all even | (b) h+k+l must k | oe even | (c) h+k+l m | ust be odd (d | d) none of them. | | | | | | , | | | | | | | | | | 45. | Metals does not exist | in nature in the fo | rm of | | | | | | | | | (a) Nitrates (b |) Sulphates | (c) Car | bonates | (d) Oxides | (e) element | | | | | | | | | | | | | | | | 46. | Which of the following | g statements abou | t heat t | reating is inco | rrect? | | | | | | | (a) the composition of | a precipitation-ha | ardenab | le alloy must b | e less than the | maximum solubility. | | | | | | (b) stress relief anneal | ing heat treatmen | t in whi | ch the piece is | heated to the r | ecommended | | | | | | temperature, held | there long enoug | h to atta | in a uniform t | emperature, an | d finally cooled to room | | | | | | temperature. | | | | | | | | | | | (c) the influence of all | oy composition on | the abi | lity of a steel a | alloy to transfor | n to martensite for a | | | | | | particular quenchi | ng treatment is re | lated to | a parameter o | called hardness. | | | | | | | (d) air cooling of auste | nitized plain carbo | on steel | s ordinarily pro | oduces an almos | t totally pearlitic structure. | | | | | | (e) reduction in streng | th and hardness t | hat occu | ırs after long t | ime periods is k | nown as overaging. | | | | | | | | | | | | | | | | 47. | Calculate the stored e | nergy (J/m³) in a c | opper c | rystal with a d | islocation densit | y of 10 ¹¹ cm ⁻² and G= 48 | | | | | | GPa and a lattice cons | | | | | _ | | | | | | (a) 1.5x10 ³ | (b) 1.5x10 ⁴ | (c) 1. | 5x10 ⁵ | (d) 1.5x10 ⁶ | (e) 1.5x10 ² . | | | | | | | | | | | | | | | | 48. | How the porosity affect | | _ | | | | | | | | | (a) Pores may reduce t | the cross-sectiona | l area ad | cross which a l | oad is applied | | | | | | | (b) Pores may increase | the cross-section | al area | across which a | load is applied | | | | | | | (c) Pores may release | the stress inside co | eramics | | | | | | | | | (d) Pores may increase | the lattice displa | cement. | | | | | | | | | | | | | | | | | | | 49. | In comparison with the | e thermoset and t | hermop | lastic polymer | s, which one is t | he advantage of | | | | | | thermoplastic? | | | | | | | | | | | (a) easier process (b) | better solvent re | sistance | (c) better h | eat resistance | (d) better cool process. | * | | | | | 系 所:材料科學及工程學系 考試科目:材料科學 考試日期:0202,節次:3 第7頁,共7頁 | 50. If D denotes diffusi
with a plot of | 50. If D denotes diffusivity and C denotes concentration, the activation energy for diffusion can be obtained with a plot of | | | | | | | | |--|--|--------------|----------------|----|--|--|--|--| | (a) InC vs 1/T | (b) InC vs T | (c) InD vs T | (d) InD vs 1/T | ** |