國立成功大學 110學年度碩士班招生考試試題

編 號: 92

系 所: 材料科學及工程學系

科 目: 材料科學

日 期: 0202

節 次:第3節

備 註:可使用計算機

系 所:材料科學及工程學系

考試科目:材料科學

考試日期:0202,節次:3

第1頁,共7頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
材料科學共50題選擇題,每題答對得2分,答錯倒扣0.5分;滿分100分,倒扣至0分為止。
Which of the following effects can demonstrate that the substitutional diffusion of alloys results from vacancy mechanism?
(a) Darken effect (b) Matano effect (c) Snoek effect (d) Kirkendall effect.
 Corrosion is a chemical reaction that involves (a) the bulk of the object changing from an element to a compound (b) the surface of the object changing from an element to a compound (c) the environment of the object changing from one compound to another compound (d) the bulk of the object changing from one element to another element (e) the surface of the object changes from one element to another element.
3. Rapidly freeze the materials favors the formation of a solid.
(a) crystalline (b) dense (c) noncrystalline (d) ductile.
4. Which of the following statement about "vacancy in a crystal" is correct.
(a) the existence of vacancy in the crystal lattice will increase the internal energy of the crystal.
(b) the equilibrium vacancy concentration (Vc) can be expressed as Vc = exp (- \triangle H/Kt), where \triangle H = formation energy of vacancy, K = Boltzmann constant, and t = time.
(c) the slow cooling process from liquid to solid will trap a lot of vacancy in the solidified crystal.
(d) the plastic deformation of metals (e.g. hot rolling) will create significantly excess concentration of vacancy than that of equilibrium vacancy concentration.
(e) the primary terms considered in the derivation of equilibrium vacancy concentration are entropy of
mixing and enthalpy for the formation of vacancy.
5. What is the secondary recrystallization?
(a) abnormal grain growth (b) increase the number of grains
(c) increase the total grain-boundary energy (d) stress release.
6. As the molecular weight increase, the tendency of a polymer to crystallize
(a) decrease (b) increase (c) remain the same (d) disappear.
7. Calculate the resolved shear stress on the (1 1 1) [0 -1 1] slip system for copper single crystal, if a stress of
20 MPa is applied in the [0 0 1] direction.
(a) 3.4MPa (b) 5.4MPa (c) 7.4MPa (d) 9.4MPa (e) 11.4MPa.
×

系 所:材料科學及工程學系 考試科目:材料科學

考試日期:0202,節次:3

考試科目:材料科	學			考試日期:0202,節次:
第2頁,共7頁				
8. Which of the fol	llowing statement a	about "dynamic re	covery" is correct:	
(a) dynamic reco	overy will increase	the dislocation de	nsity and strength.	
(b) dynamic reco	overy typically occu	irs at lower tempe	rature compared with	that of static recovery.
(c) dynamic reco	overy is much easie	r to occur for BCC	crystals compared wit	h that of FCC crystals.
(d) dynamic reco	overy typically occu	irs in the aging pro	ocess.	
(e) the primary	mechanism involve	d in dynamic reco	very is dislocation cros	s-slip.
9. The impact stre	ngth of a polymer i	s measured as		
(a) elasticity	(b) yield stren	gth (c) cre	ep (d) permea	bility (e) toughness
				l: 80.7, 84.4, 87.2, 86.2 and
88.3. Determin	ne the standard dev	viation values of h	ardness.	
(a) 2.65	(b) 2.97	(c) 5.93	(d) 5.34	(e) 2.42
11. Carbon is allow	ved to diffuse throu	igh a steel plate 10	0 mm thick. The concer	ntrations of carbon at the two
faces are 0.85	and 0.40 kg C/cm ³	which are kept co	nstant. If the preexpon	ential and activation energy
are 6.2 x 10 ⁻⁷ n	n ² /s and 80,000 J/n	nol, respectively, o	ompute the temperati	are at which the diffusion flux
is 6.3 x 10 ⁻¹⁰ kg	g/m^2 -s.			
(a) 300K	(b) 600K	(c) 900K	(d) 1200K	
12. Which is the hi	ighest strain energy	precipitate?		
(a) Disk	(b) Sphere	(c) Needle	(d) Plate.	
13. For eutectic so	lidification, the rat	e of grows depend	I on:	
(a) heat flow	(b) the critical		(c) lamellar spacing	(d) melting temperature.
14 The number of	f vacancies in solids			
	nearly with temper			
, ,				
• •	xponentially with to			
	ent to the tempera			
	inearly with tempe			
(e) decreases e	exponentially with t	emperature.		
15. Which of the fo	ollowing statement	is support about	the strain hardening ef	fect
(a) oversaturat	ed solid solution	(h) precipitation	ons (c) deformation	on (d) diffusion

系 所:材料科學及工程學系

考試科目:材料科學

考試日期:0202,節次:3

44	2	百		#	7	雷
事	3	Ħ	,	夹	1	

16.	. What is the or	der of surf	ace energy (γ) of differe	nt surfaces in	iron crystal?		
	(a) γ (111) >	γ (110) >	γ (100)	(b	γ (110) > γ	$(111) > \gamma (100)$		
	(c) γ (100) >	γ (111) >	γ (110)	(d	γ (110) > γ	$(100) > \gamma (111)$		
								y
17.	For the crystal	structure	of sodium cl	nloride, what	is the coordin	nation number f	or cations (X) and an	ions
	(Y). (Represent	ted in the	form of (X ,\	())				
	(a) (4,4)	(b) (6,6)	(c) (8,8)	(c	1) (8,4)		
18.	. Two edge dislo	cations w	hich are side	by side at th	e same slip pl	ane with oppos	ite Burgers factor wil	I
	(a) Attract eac	h other	(b) Release	e stress in gra	in (c) Dis	appear finally	(d) All of above.	
19.	. Which of the f	ollowing s	tatement is s	upport abou	the eutectoi	d composition?		
	(a) Aluminum	alloy	(b) low car	bon steel	(c) high o	carbon steel	(d) stainless steel	
20.	Estimate the y	ield stress	(in MPa) of	the material i	ısing Vickers l	hardness test u	nder 500g with the le	ngth
	of diagonal 25							
	(a) 48.5	(b) 14	.8 (c) 4.9	(d) 145.4	(e) (55.3.	
21.	Which of follow	wing state	ment is corre	ect?				
	(a) Diamond h	as a high t	hermal cond	uctivity beca	use it belongs	to carbon mate	erials	
	(b) Diamond h	as a low el	ectrical cond	ductivity due	to the strong	interatomic ion	ic bonds	
	(c) Diamond ha	as a low el	ectrical cond	luctivity due	to the strong i	interatomic cov	alent bonds	
	(d) Diamond h	as a low th	ermal condu	activity due to	the weak va	n der Waals bo	nd	
22.	Calculate the f	racture to	ughness K _{IC} (MPa.m ^{-1/2}) fo	r a 0.45C-Ni-0	Cr-Ti steel havin	g a flaw size of 4.8 m	m
	and a yield stre							
	(a) 26	(b) 36		(c) 46	(d) 56	(6	e) 66.	
						•	•	
23.	Which of the fo	ollowing st	atement is r	not support a	out the dom	inant factor of i	ncreasing hardness a	nd
						aining to artific		
	(a) diffusional			(b) GP			,	
	(c) strain induc				cipitation har	dening		
	,					C		
24.	A twin bounda	ry is						
	(a) a special typ		boundary	(b) a s	oecific mirror	lattice symmet	ry	
	(c) resulted fro				interfacial de		(e) all of them.	
			,	, ,				

系 所:材料科學及工程學系

考試科目:材料科學

考試日期:0202,節次:3

第4頁,共7頁

25	. What is the c/a ratio	of the HCP crystal s	structure < 1.63?		
	(a)Cobalt	(b)zirconium	(c)magnesium	(d)zinc	(e)cadmium.
26	. Why does not consider materials:	der the grain bound	ary diffusion under hig	h temperature	e condition for metal
	(a) coarse grains	(b) segregation	(c) recrystallization	(d) high tem	perature brittleness.
27					SINGLE layer of carbon
	atoms with sp ² hybr	idization, forming a	2D honeycomb lattice	plane?	
	(a) graphite (b)	graphene (c) fo	ullerene (d) carbo	n nanotube	(e) diamond.
	740 - 1 - 641 - 6-11		- 65 - 11 - 1 - 1 - 1 - 1		
28			e effective to stop dislo		
	(a) Low-angle bound		gh-angle boundaries	(c) Cohe	erent boundaries
	(d) semi-coherent bo	oundaries (e) Tv	vin boundaries		
20	\A/b = + != +b = == == == ==			,	
29	. What is the measure			(-)	
	(a) fracture stress		imate tensile stress	(c) max	imum stress
	(d) principal stress	(e) yie	eld strength.		
30	Which one is not fou	and after cooling in h	hypereutectoid plain-c	arhon steels?	
50	(a) austenite	(b) pearlite	(c) cementite	(d) ferrite	(e) bainite.
	(a) aastama	(b) podime	(o) comentic	(u) reinic	(c) builte.
31	. Which of the followi	ng statement is sup	port about shortening	the holding tir	me of heat- treatment under
	an identical holding				
	(a) deformation	(b) quenchir	ng (c) re	efining	(d) inoculation.
32	. For a binary solid sol	ution with two diffe	erent inter-diffusing co	efficients, whi	ch of the following
	equations is used to	describe the net flu	x of vacancy into the d	iffusion bondi	ng interface?
	(a) Darken's equation	n (b) Arrhenius' e	equation (c) Avram	ni equation	(d) Fick's 1st law equation.
33.	. Fick's second law is o	derived from			
	(a) interstitial diffusion	on mechanism	(b) conservation	on of matter	
	(c) thermodynamic f	irst law	(d) thermodyr	namic second I	aw.
34.					he total dislocation length
					ocation density in the foil.
	(a) 2 x 10 ¹⁴ m ⁻²	(b) 1 x 10 ¹⁴ m ⁻²	(c) 4 x 10 ¹⁴ m ⁻²	(d) 1 x 10 ¹⁰ m	² (e) 2 x 10 ¹⁰ m ⁻²
					*

編號: 92

國立成功大學 110 學年度碩士班招生考試試題

系 所:材料科學及工程學系

考試科目:材料科學

考試日期:0202,節次:3

第5頁,共7頁

35.	Which one of the fo	llowing is CO	RRECT latt	ice parameter	relations	hip of a CUB	IC structure	?
	(a) $a = b = c$, $\alpha = \beta =$	$= \gamma = 90^{\circ}$	(b) $a = 1$	$c = c, \alpha = \beta = \gamma$	≠90°	(c) a≠b	\neq c, $\alpha = \beta =$	$\gamma = 90^{\circ}$
	(d) $a = b \neq c$, $\alpha = \beta =$	$= \gamma = 90^{\circ}$	(e) $a = b$	$\phi \neq c, \alpha = \beta = 9$	$0^{\circ}, \gamma = 12$	0°.		
36.	. The diffusion coeffic	cient for copp	er in alum	inum at 500 a	nd 600℃	are 4.8 x 10	⁻¹⁴ and 5.3 x	10 ⁻¹³ m ² /s,
	respectively. Determ							
	terms of concentrat							
	(a) 50.1h	(b) 23.7h		(c) 13.5h		(d) 110.4		
37	. Which one of the fo	llowing has t	ne highest	degree of crys	stallinity?			
	(a) Metallic Glass			c) Amorphous (/l chloride)	(e) Water.
38	. Which one shows a	distinguished	temperat	ture transition	from brit	tle to ductile	e?	
	(a) Low carbon stee	ls (b) alumini	um alloys	(c) copper all	oys	
	(d) high strength ste	eels	(e) austen	itic stainless st	eels.			
39	. The diffusion coeffic	cient is lower	at low ten	nperature, whi	ich of the	following m	ethod is use	ed to measur
	the diffusion of carb	on in steel at	room ten	nperature?				
	(a) Torsion pendulu	m	(b) trace e	lement		(c) diffusion	couple	
	(d) Matano method		(e) Darker	n's method				
40	. What type of protec	ction is galvar	izing?					
	(a) physical protecti	on .	(b) therm	al protection		(c) chemic	al protectio	n
	(d) sacrificial protec	tion	(e) physic	al and sacrifici	al protec	tion		
41	. Which of the follow	ing statemen	t about "c	reep" is correc	t.			
	(a) Creep deformati	on of metal o	ccurs at te	emperature lov	wer than	30% of its m	elting temp	erature.
	(b) Creep deformati boundary sliding		related to	o the dislocation	on motion	n, vacancy di	ffusion, and	grain
	(c) Creep rate is ind		he stress	applied.			8	
	(d) The characterize				o the rate	in this initia	al stage.	
	(e) The most commo							
42	. Which one of follow	ing substance	es is NOT l	bounded by co	valent bo	nding?		
	(a) CH ₄	(b) H ₂	(c) Si	(d) H ₂	0	(e) NaCl.	
					-			

系 所:材料科學及工程學系

考試科目:材料科學

考試日期:0202,節次:3

第6頁,共7頁

43.	The activation energy	is an important pa	ramete	r related to di	ffusion coefficie	nts. Which of the following			
	four conditions has the largest activation energy?								
	(a) Mn atom on the ferrite grain boundary (b) Carbon atom in the ferrite grain								
	(c) Mn atom in the sur	face of MnS inclus	sion	(d) Mn atom	in the ferrite gra	in.			
44.	For the BCC crystal str	ucture, the Miller	indices	(h, k, and I) of	planes must be	if diffraction is to			
	occur.								
	(a) h, k, l are all even	(b) h+k+l must k	oe even	(c) h+k+l m	ust be odd (d	d) none of them.			
	,								
45.	Metals does not exist	in nature in the fo	rm of						
	(a) Nitrates (b) Sulphates	(c) Car	bonates	(d) Oxides	(e) element			
46.	Which of the following	g statements abou	t heat t	reating is inco	rrect?				
	(a) the composition of	a precipitation-ha	ardenab	le alloy must b	e less than the	maximum solubility.			
	(b) stress relief anneal	ing heat treatmen	t in whi	ch the piece is	heated to the r	ecommended			
	temperature, held	there long enoug	h to atta	in a uniform t	emperature, an	d finally cooled to room			
	temperature.								
	(c) the influence of all	oy composition on	the abi	lity of a steel a	alloy to transfor	n to martensite for a			
	particular quenchi	ng treatment is re	lated to	a parameter o	called hardness.				
	(d) air cooling of auste	nitized plain carbo	on steel	s ordinarily pro	oduces an almos	t totally pearlitic structure.			
	(e) reduction in streng	th and hardness t	hat occu	ırs after long t	ime periods is k	nown as overaging.			
47.	Calculate the stored e	nergy (J/m³) in a c	opper c	rystal with a d	islocation densit	y of 10 ¹¹ cm ⁻² and G= 48			
	GPa and a lattice cons					_			
	(a) 1.5x10 ³	(b) 1.5x10 ⁴	(c) 1.	5x10 ⁵	(d) 1.5x10 ⁶	(e) 1.5x10 ² .			
48.	How the porosity affect		_						
	(a) Pores may reduce t	the cross-sectiona	l area ad	cross which a l	oad is applied				
	(b) Pores may increase	the cross-section	al area	across which a	load is applied				
	(c) Pores may release	the stress inside co	eramics						
	(d) Pores may increase	the lattice displa	cement.						
49.	In comparison with the	e thermoset and t	hermop	lastic polymer	s, which one is t	he advantage of			
	thermoplastic?								
	(a) easier process (b)	better solvent re	sistance	(c) better h	eat resistance	(d) better cool process.			
					*				

系 所:材料科學及工程學系

考試科目:材料科學

考試日期:0202,節次:3

第7頁,共7頁

50. If D denotes diffusi with a plot of	50. If D denotes diffusivity and C denotes concentration, the activation energy for diffusion can be obtained with a plot of							
(a) InC vs 1/T	(b) InC vs T	(c) InD vs T	(d) InD vs 1/T					
				**				