國立成功大學 110學年度碩士班招生考試試題

編 號: 93

所: 材料科學及工程學系(綠色應用 材料碩士班)

科 目: 物理

期: 0203

次: 第1節 節

註: 可使用計算機 備

編號: 93 國立成功大學 110 學年度碩士班招生考試試題系 所: 材料科學及工程學系(新色應用材料和其土 计)

考試科日:物理

与政件日・物理				考試日期:0203,節次:1	
第1頁,共8頁					
※ 考生請注意:本	試題可使用計算機。	請於答案卷(卡)作	答,於本試題紙上	作答者,不予計分。	
物理共50題選擇題	, 每題答對得2分,	答錯倒扣 0.5 分;滿	分 100 分,倒扣至	0分為止。	
1. Spacecraft-1 move	es away from you with	the speed of 0.50c re	ative to you. Space	craft-2 also moves away	
	e same direction, but v			•	
	ive to you? (c is speed			are in now ruse is	
(a) 0.10c	(b) 0.40c	(c) 0.65 <i>c</i>	(d) 0.75c.		
(0) 0.100	(5) 0.100	(c) 0.03c	(u) 0.75c.		
2. What is the chang	e in entropy (J/K) of 25	50 g of steam at 100°C	when it is condens	ed to water at 100°C2	
$(C_{\text{steam}} = 22.6 \times 10^5)$		6 8 0 1 Steam at 100 C	When it is condens	ca to water at 100 C;	
(a) -1500 J/K	(b) -150 J/K	(c) O J/K	(d) 150 J/K	(e) 1500 J/K.	
(0) 15003/10	(0) 1303/10	(0) 0 3/10	(u) 130 3/K	(e) 1300 J/K.	
3 A 660-Hz tuning fo	ork has a total energy o	of 0.04 I. What is the r	atio of its quantizes	d anarmy to its total	
energy?	A K Has a total chergy o	o.o.s. what is the i	atio of its qualitized	d energy to its total	
(a) ~10 ⁻²⁷	(b) ~10 ⁻³³	(c) ~10 ⁻²⁹	(d) ~ 10 ⁻³¹	(e) ~ 10 ⁻³⁰ .	
(a) 10	(b) 10	(c) 10	(a) ~ 10	(e) ~ 10 ° .	
4. One end of a long	thin rad of langth D is	factored to the floor	with a bines. The	for a sud to votated a state	
				free end is raised so the	
	le θ with the horizonta	i, then released from	rest. Find the line	ar speed v of the free	
end just before it	strikes the floor.				
(a) $\sqrt{1.5gD\sin\theta}$	(b) $\sqrt{3gD\sin\theta}$	(c) $\sqrt{6gD\sin\theta}$	(d) $\sqrt{12gD\sin\theta}$	ī.	
5. Two aluminum wi	res have the same resi	stance. If one has twice	re the length of the	other, what is the ratio	
	f the longer wire to the			other, what is the ratio	
(a) 0.64	(b) 1.00	(c) 1.41	(d) 1.78.		
(0) 0.04	(5) 1.00	(0) 1.41	(4) 1.78.		
6. In the consideration	on of the Maxwell four	th aquation which of	the following guern	tity is solenoidal in the	
electromagnetic t		ar equation, which or	the following quan	ruty is soleholdal in the	
_	•	and an alternative of a V A A a second		N. Electrical Line and	
(a) Magnetic flux	density (b) Electric fil	ux density (c) Magne	etic field intensity (d) Electric field intensity.	
7 A haam of initially					
				one on top of the other.	
100 100 100 100			the sheets if the int	ensity of the transmitted	
	third the incident inten	•			
(a) 35°	(b) 36°	(c) 37°	(d) 38°.		
	,				
8. An ideal gas occupies 12 liters at 293K and 1 atm (76 cm Hg). Its temperature is now raised to 373K and its					
A control of the cont	d to 215 cm Hg. The ne	ew volume is:			
(a) 0.2 liters	(b) 5.4 liters	(c) 13.6 liters	(d) 20.8 liters.		
ı					

編號: 93 國立成功大學 110 學年度碩士班招生考試試題系 所: 材料科學及工程學系(終起應用材料項工班)

考試科目:物理

第	2	頁	,	共	8	頁
---	---	---	---	---	---	---

73-	, X , X , X					
	Which of the follow continuous?	ing type of boundar	y would make	the tange	ential component	of an electric field
(a) Dielectric-Dielec	tric (b) Conducto	r-Conductor	(c) Cond	luctor-Dielectric	(d) Any boundary.
10.	minute, but the cla	ving S' reference fra ocks in the rest fram with respect to frame	e S indicate th	e same ti		time interval of 1 inutes. How fast is the
	(a) 0.866c	(b) 0.750c	(c) 0.677		(d) 0.525c.	
11.	probability of find	ing the particle betw	veen x = 0.2 an		is	= 0 elsewhere. The
	(a) 0.0563	(b) 0.0387	(c) 0.267		(d) 0.767	(e) 0.0289.
12			and is perfectl	y absorbi	ng and that the bu	t the surface on which alb radiates uniformly in a.
13		or can be discharged contains carbon diox				ecause the flame: e rapidly moving atoms.
14	direction of that in		larizing direction	ons of the	sheets are at ang	to the polarization les θ for the first sheet the two sheets, what is
	(a) 10° or 80°	(b) 20° or 70°	(c) 30° or 6	0°	(d) 40° or 50°.	
15	. The Maxwell seco	nd equation that is v	alid in dielectr	ic mediu	m is which of the f	following?
	(a) Curl(H) = Jd	(b) Curl(H) = Jc	(c) Curl(E)		(d) Curl(E) = Jo	
16	(a) Shape of the or (b) Spatial orienta	tion of the orbital ce of the most elect ctrons		ns from t	he nucleus	
	W. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					

編號: 93

國立成功大學 110 學年度碩士班招生考試試題

所:材料科學及工程學系(說色應用材料)及生动的

考試科目:物理

考試日期:0203,節次:1

第3頁,共8頁

17. An electron has the kinetic energy of 486 eV. What is its de Broglie wavelength?

(a) 0.025 nm

- (b) 0.055 nm
- (c) 0.085 nm
- (d) 0.115 nm.
- 18. A uniform solid bowling ball (mass M, radius R) is launched in pure translation (without rotation) along the bowling alley floor with an initial speed v_0 . During an initial distance D, it partially slides while gaining rotational speed, after which it rolls without slipping. The constant force of friction is f. In terms of the given symbols, find the distance D.
 - (a) $12mv_0^2/(25f)$ (b) $12mv_0^2/(5f)$
- (c) $12mv_0^2/(7f)$
- (d) $12mv_0^2/(49f)$.
- 19. The two plates of a capacitor hold 2800 mC and -2800 mC of charge, respectively, when the potential difference is 930 V. The capacitance is $___$ $\mu\text{F}.$
 - (a) 1.0
- (b) 3.0
- (c) 5.0
- (d) 7.0.
- 20. Each part of the below figure shows light that refracts through an interface between two materials. The incident ray (shown gray in the figure) consists of red and blue light. The approximate index of refraction for visible light is indicated for each material. Which of the three parts show physically possible refraction?

- 21. If you travel at a speed of 2x10⁸ m/s in the +x direction, then you will find the speed of light, in the -x direction, to be
 - (a) unknown
- (b) 1x10⁸ m/s
- (c) $3x10^8$ m/s
- (d) $5x10^8$ m/s
- (e) None of the above.
- 22. The terminal potential difference of a battery is less than its emf:
 - (a) under all conditions
- (b) only when the battery is being charged
- (c) only when the battery is being discharged (d) only when there is no current in the battery.
- 23. If the distance between the first and tenth minima of a double-slit pattern is 18.0 mm and the slits are separated by 0.150 mm with the screen 50.0 cm from the slits, what is the wavelength of the light used?
 - (a) 400 nm
- (b)500 nm
- (c) 600 nm
- (d) 700 nm
- (e) 800 nm.

編號: 93 國立成功大學 110 學年度碩士班招生考試試題系 所: 材料科學及工程學系(終色應用材料)碩士中)

考試科目:物理

第4頁	,共8	頁
-----	-----	---

24.	by connecting th	neir positive tern	ninals together a	nd connecting	their negative te	Ω , are wired in parallel rminals together. The the 4- Ω resistor is:	
	(a) 4V	(b) 8V	(c) 14V	(d) 16V.		the 4 x 1 colotor is.	
25.	If the <i>I</i> =3 orbital (a) 7	state is placed in (b) 6	n a magnetic fiel (c) 5	d, how many si (d) 4.	ubstates does it s	split into?	
26.	when viewed from moving) at a con 2m from the axis the Coriolis force.	om above. A 40 astant speed of 2 s. Analyze the ce on the rider?	O-kg rider walks to the properties of the situation in the residuation in the residual to the situation in the residual to the situation in th	angentially (in the merry-go-ro otating frame	the same directi ound, maintainin to find the magn	er-clockwise direction on the merry-go-round g a constant radius of itude and direction of (d)20N, radially outwal	f
27	. What is the indu from 28.0 mA to (a) 0.566 H		ms?	ces an emf of -2	2.50 V when the (current in it changes	
28		gine provides a t the airplane wh	rust of 0.80N pe	rpendicular to	the tethering wir	circle 30m in radius. The radius find the angular $7.12 \times 10^{-3} \ rad \ / \ s^2$.	
29	The bond length to J=1 absorptio (a) 1.15x10 ¹⁰ Hz	n frequency for	CO?	spectively 0.113	3 nm and 1.14x10		=0
30	speed of source source emits wa are the frequence	A is 29.9 m/s, that is 29.9 m/s, that is 29.9 m/s, that is 29.0 m/s, the λ =0.0208 m	ne speed of surfact y 1200 Hz as mest th of the arriving (b) $f=1.64 \times 10$	ice B is 65.8 m/asured in the so g sound waves 3 ; λ =0.208 m	s, and the speed ource frame. In the c) f=1.44 x 10	elative to the air, the of sound is 329 m/s. The he reflector frame, wh 0^3 ; $\lambda = 0.0208$ m	

編號: 93 國立成功大學 110 學年度碩士班招生考試試題 系 所: 材料科學及工程學系(為第4) (為第4) 有其一种()

考試科目:物理

(a) 1.22

考試日期:0203,節次:1

	WIT LI TOPE				与武山别·U203,即火·
_	頁,共8頁				
31	the plane, where	it remains at rest (ir	the cart's frame) eve		s ² . A mass is placed on ned plane is frictionless.
		the plane make with	n the horizontal?		
	(a) 31.5°	(b) 37.0°	(c) 45.0°	(d)53.0°.	
32					scale while the elevator
	moving, please fin	nd a general solution	n for the scale reading	g, whatever the vert	ical motion of the cab.
			leration is g and the		v(t).
	(a) $m(g+y)$	(b) $m(g + y')$	(c) $mg + y''$	(d) $m(g +$	· y'').
33	. Estimate the mag (a) 10 ⁻¹⁰ eV		electron in the 2p stat (c) 10 ⁻¹⁵ eV		m. (e) 10 ⁻⁵ eV.
	,	(-7	(-)	(4) 20	(0) 10 01.
34					If the only force betwee
	proton? Their m	nasses are $m_e = 9.1$	$1\times10^{-31}kg$ and m_p	$=1.67\times10^{-27} kg$.	
	(a) 0.7year	(b) 1.4year	(c) 0.07year	(d) 0.14year.	
35	. The Maxwell first	law is based on wh	ich of the following la	w(s)?	
	(a) Lenz law	(b) Faraday law	(c) Ampere law	(d) Faraday and	Lenz law.
36	i. A slit 1.00 mm wid	de is illuminated by	light of wave-length	600 nm. We see a di	iffraction pattern on a
ĺ					nima on the same side of
	the central diffrac			4	
	(a) 3.0 x 10 ⁻³ m	(b) 1.0×10^{-3} m	(c) 2.0×10^{-3} m	(d) 3.6×10^{-3} m	(e) 1.8 x 10 ⁻³ m.
37	. In a medium othe	r than air, the elect	ric flux density will be	which of the follow	ving
	(a) solenoidal	(b) Divergent	(c) Irrotational	(d) Curl free.	
38	undergoes total in	nternal reflection at	s a glass slab at point at point at point B. (The reflecting sean be inferred from	on at A is not showr	θ_1 = 45.0° and then a.) What minimum value

(d) 1.25

(b) 1.23 (c) 1.24

編號: 93

國立成功大學 110 學年度碩士班招生考試試題

系 所:材料科學及工程學系(統是應用材料)可生品的

考試科目:物理

考試日期:0203,節次:1

第6頁,共8頁

- 39. An air-filled parallel-plate capacitor has a capacitance of 1 pF. The plate separation is then doubled and a wax dielectric is inserted, completely filling the space between the plates. As a result, the capacitance becomes 2 pF. The dielectric constant of the wax is:
 - (a) 0.5
- (b) 2.0
- (c) 4.0
- (d) 8.0
- 40. What is the spin angular momentum of an electron? (h is Plank's constant).
 - (a) $h/4\pi$
- (b) $3h/2\pi$
- (c) √3h/2π
- (d) √3h/4π.
- 41. A string oscillates according to the equation y= (0.50 cm) $\sin[(\pi/3 \text{ cm}^{-1})x] \cos[(40 \pi \text{ s}^{-1})t]$. What are the speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation, ν ? What is the distance between nodes, D?
 - (a) $\nu = 60 \text{ m/s}$; D=6.0 m
- (b) $\nu = 60 \text{ m/s}$; D=12.0 m
- (c) $\nu = 120 \text{ m/s}$; D=6.0 m

- (d) $\nu = 240 \text{ m/s}$; D=6.0 m
- (e) $\nu = 120 \text{ m/s}$; D=3.0 m.
- 42. A wheel undergoes a constant angular acceleration $2rad/s^2$. During a 3-s interval, the wheel turns through a total angular displacement of 90 rad. If the wheel started from rest, how long had it been turning before the beginning of the 3-s interval?
 - (a) 4.5-s
- (b) 7.5-s
- (c) 13.5-s
- (d) 15-s.
- 43. A horizontal pipe 10cm in diameter has a smooth reduction to a pipe 5cm in diameter. If the pressure of the water in the large pipe is $8\times10^4N/m^2$ and the pressure in the smaller pipe is $8\times10^4N/m^2$, at what rate does water flow through the pipes?
 - (a) 12.8kg/s
- (b) 128kg/s
- (c) 6.4kg/s
- (d) 64kg/s.

國立成功大學 110 學年度碩士班招生考試試題

系 所:材料科學及工程學系(鉄色應用名)程可工程)

考試科目:物理

第7	頁,共8頁						
44.	44. In the laser operation pumped by optical absorption, what is the minimum number of energy levels						
	needed in order to	achieve population in	version?				
	(a) 1	(b) 2	(c) 3	(d) 4			
45.				m) and damping factor b (kg/s). If			
	$b^2 - 4mk < 0$, the	n what is the period o	of the motion?				
	(a) $2\pi\sqrt{\frac{m}{k}}$	(b) $2\pi \frac{2m}{\sqrt{4mk-b^2}}$	$(c) \ 2\pi \frac{2m}{\sqrt{b^2 - 4mk}}$	(d) $2\pi \frac{m}{\sqrt{4mk-b^2}}$			
46	$F\left(N\right)$ and a mome rotate him about the inertia relative to the	ent arm $d_1(m)$ from ne pivot point with an	a pivot point (rotation a angular acceleration $lpha$ (m^2) and the distance	intend to pull his uniform with a force xis) on your right hip. You wish to (rad/s^2) . Assume that his rotational between your hip to his hip is $d_2(m)$			
	(a) $\frac{l\alpha}{d_1} + \frac{d_2Mg}{d_1}$	(b) $-\frac{l\alpha}{d_1} + \frac{d_2Mg}{d_1}$	$(c) -\frac{l\alpha}{d_2} + \frac{d_2Mg}{d_1}$	(d) $\frac{l\alpha}{d_2} + \frac{d_2Mg}{d_1}$			
47	from:	emperature, i.e. $T \rightarrow 0$ (b) lattice vibration		ne specific heat of solids mainly come electrons and lattice vibration			
48	$v_i = 70 \text{ m/s}$ alon $v_f = 50 \text{ m/s}$ alon the driver due to the	ng a straight line at 3 ng a straight line at 1	0° from the wall. Just aft 0° from the wall. His ma	re the collision, he is traveling at speed for the collision, he is traveling at speed ss m is $80 kg$. What is the impulse on a/s (d) $4410 kg \cdot m/s$.			
49	are sound waves w ultrasound at frequ that flies with veloc	ith frequencies greater iency $f_b = 82.52 kH$	er than can be heard by a z while flying with veloc The speed of sound is 34	g reflections of, ultrasonic waves, which human. Suppose a bat emits ity $v_b = 9.0 i m/s$ as it chases a moth $3 m/s$. What frequency does the bat (d) $83.00 kHz$.			

編號: 93 國立成功大學 110 學年度碩士班招生考試試題系 所: 材料科學及工程學系(終记度) 印材料(為工物工)

考試科目:物理

第8頁,共8頁					
	50. A wave has an angular frequency of 110 rad/s and a wave-length of 1.80 m. Calculate the angular wave				
number, K, and the speed of the		(-) K 2 40 1 C4 44 /-			
(a) K=3.48 m ⁻¹ ; ν =63.05 m/s	(b) K=0.55 m ⁻¹ ; ν =31.51 m/s	(c) K=3.48 m ⁻¹ ; ν =61.11 m/s			
(u) K-3.46 III. , V-03.05 III/S	(e) K=1.11 III , V=31.31 III/3.				
,					
,					