Explain why grain boundaries will move towards their center of curvature during grain growth but away from their center of curvature during recrystallinzation. (10%)

- ,

- (a) 請問右圖之名稱爲何?並敘述其功能及重要性。(3%)
- (b) 右圖中有三個空格(甲、乙、丙),請問其應有 之 Miller Indice 爲何?(3%)
- (c) 右圖中有一粗線描出之三角形,請問其名稱爲何? 並敘述其重要功能。(3%)
- (d) 請根據右圖,在答案紙上另繪圖,並標出 (123) 及 (211) 平面所應有之位置。(3%)

 \equiv .

Would a high angle grain boundary or a coherent boundary be more effective at stopping the dislocation motion? Explain why? (10%)

四、

The following equation is known as the "consitituional supercooling criterion" which has been used to estimate the solid/liquid interface shape during a solidification process of an alloy.

$$G_{cr} = m_l R C_o (1-k) / k D_l$$

- (a) Please define and describe each of the parameter used in this equation.(5%)
- (b) Please describe what kind of interface will be at the following conditions. (5%)
 - i. $G_1 > G_{CT}$
 - ii. G_1 slightly less than G_{cr}
 - iii. $G_l \ll G_{cr}$
- (c) Please indicate on an eutectic binary phase diagram (as shown on the right), what range of composition the above equation is valid? Please explain why. (5%)

A cutectic phase diagram defining compositions C_n and C_n .

五、

- (a) Please define CRSS and describe its physical meaning? (5%)
- (b) Between the yield stress for a single crystal and a polycrystalline material, which one will has a higher yield stress? Explain why? (5%)

六、

- (i) 光學顯微鏡、(ii)穿透式電子顯微鏡、(iii)掃描式電子顯微鏡等為三種材料組 織觀察研究常用之儀器。請敘述這三種儀器之
- (a) 英文全名及縮寫。 (3%)
- (b) 試片準備時之特殊要求及尺寸大小。 (3%)
- (c) 放大倍率範圍及解析度。 (3%)
- (d) 如果具有化學分析之功能,其所附加之儀器名稱及功能爲何?(6%)

-ts ••

在鋼鐵材料中,依其成分及不同之熱處理方法,可以形成不同之微觀組織。請敘述下列五種組織之(a)成分,(b)熱處理方法,(c)微觀組織(可繪一簡圖並標示之),(d)材料特性。

- 1. Martensite (4%)
- 2. Pearlite (4%)
- 3. Grey Cast Iron (4%)
- 4. Nodular Cast Iron (4%)
- 5. Dual Phase Steel (4%)

八、

已知銅結晶之晶格常數(lattice constant)爲 3.615 埃(Angstrom),氣體常數爲 8.314 J/mole,銅空孔(vacancy)之莫耳形成熱爲 83,000 J/mole。

- (a) 請計算銅(Cu)結晶中之原子空孔體積(atomic volume of a vacancy)。(4%)
- (b) 請計算銅結晶在 700 K 時之平衡空孔濃度(equilibrium concentration of vacancy)。(4%)