图 學年度 國立成功大學村科教教授 系 微穩分

- Find the following limits:
 - (i) $\lim_{u\to 0^+} \frac{\int_{a}^{\sin u} \sqrt{\tan x} dx}{\int_{0}^{\sin u} \sqrt{\sin x} dx}$ provided that $\lim_{x\to 0^+} \frac{\sin x}{\tan x} = 1$ is known. see
 - (ii) $\lim_{x\to 0} \frac{e^x + e^{-x} 2}{1 \cos x}$. 5%
 - (ii) $\lim_{x\to\infty} x \sin\frac{1}{x}$. 5%
 - (iv) $\lim_{x\to 1} \frac{x+\sqrt{x}-2}{x^3-1}$. 5%
- 2. Find the following integrals:
 - (i) ∫ sin 3x cos⁵ xdx, s₇₄
 - (ii) $\iint_{\Omega} (x+3y^3) dxdy$ where $\Omega = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x^2 + y^2 \le 1\}$. sm
 - $(\vec{n}) \int_0^a \frac{dy}{y\sqrt{1+(\ln y)^2}}.$ 5%
 - (iv) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-(x-y)^2}}{1+(x+y)^2} dx dy$. 57.
- 3. If f is a continuous function in [0, 1] and f(x) < 1 for $x \in [0, 1]$. Then equation $2x \int_0^x f(t)dt = 1$ has one and only one root in [0, 1]. 16%
- 4. Show that the function $f(x) = e^x + x$ being differential and one-to-one has a differentiable inverse $f^{-1}(x)$ and find the value of $\frac{df^{-1}}{dx}$ at point $f(\ln 2)$. 10%
- If a is a positive constant, show that

$$\int_0^\infty e^{-a^2x^2} dx = \frac{1}{a} \int_0^\infty e^{-x^2} dx.$$

Use this fact to show that the centroid of the region between the curve $y=e^{-a^2x^2}$ and the x-axis is $(0,\frac{\sqrt{2}}{4})$. 10%

6. Use the alternating series test to show that the improper integral

$$\int_0^\infty \frac{\sin x}{x} dx$$

converges. 10%

7. Find the real number C such that

$$\int_{-\infty}^{C} x e^{2x} dx = \lim_{x \to \infty} \left(\frac{x+C}{x-C} \right)^{x}.$$

10%

8. Show that $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln \ln n}}$ diverges. Hint: show that $(\ln \ln n)^2 \leq \ln n$ for large n.